
DOCUMENT VERSION CONTROL
WITH GIT

BEFORE WE START…

Version control is a system that records changes to a file or set of files over time so that
you can recall specific versions later.

Has existed for almost as long as writing has existed (ex. document version)

Today, the most capable (as well as complex) revision control systems are those used in
so�ware development.

WHAT IS VERSION CONTROL?

Revert files back to a previous state

"Freeze" important versions of a document

Compare changes over time

Track progress of a project

See who modified something, and when

WHY?

Remote backup of files

Powerful tool for collaboration

MODERN VERSION CONTROL SYSTEMS

Developed by Linus Torvalds in 2005

The linux Kernel:

~63000 files

Roughly 15,600 developers from more than 1,400 companies

GIT

Free and open source

Distributed

Powerful and flexible

Learning curve can be steep

CHARACTERISTICS

HOW DOES IT WORK?

Package managers are heavily recommended!

INSTALLATION

https://git-scm.com/download/win

https://git-scm.com/download/win

register at the remote git server

create repository

add participants ssh public keys

clone the repository in your machine

CREATING A REMOTE REPOSITORY

https://git.webhosting.rug.nl/

https://git.webhosting.rug.nl/

Every repository should have these 2 files:

README: project description and useful information

.gitignore: special file indicating GIT which files are not to be tracked

README AND .GITIGNORE

WORKFLOW

git clone repository

Clones the remote repository into the local one

COPYING REMOTE REPOSITORY: CLONE

git add files

Adds the changes into the local staging area

STAGING CHANGES (LOCAL)

git commit "message"

Saves the changes in the staging area into the repository

Creates a "snapshot" of the current state of one or more files

A message describing the changes must be provided

SAVING CHANGES: COMMIT (LOCAL)

git log files

returns a history of the file modifications

git revert commit

removes one or more commits from the local files, changes must be committed a�er

HISTORY AND REVERT (LOCAL)

git push

Uploads the state of the local repository to the remote one

UPLOAD TO REMOTE REPOSITORY: PUSH

git pull

Fetch and merges the documents in the remote repository into the local one

Merging files can generate conflicts, git will ask us to fix them and commit the changes

DOWNLOAD FROM REMOTE REPOSITORY: PULL

BRANCHING

tags

partial reverts

change history

…

OTHER (ADVANCED) STUFF

So�ware is a small part of the documents a project must handle

Still, version control and remote collaboration are needed for all the documents

In the last years there is a big push of treating documents the same way as programming
files

DOCS AS CODE

https://www.writethedocs.org/guide/docs-as-code/

https://www.writethedocs.org/guide/docs-as-code/

Working in plain text files (rather than binary file formats like Word)

Collaborating using version control such as git and GitHub

Storing docs in the same repositories as the programming code itself

Versioning docs through git tags/releases (rather than duplicating all the files to archive
each release)

Generate other formats or websites without modifying the document

ADVANTAGES

The most common document formats: word, pdf… are binary files

git (text based) doesn’t work with them

JUST A LITTLE PROBLEM…

Markup languages:

Markup languages are ways of annotating an electronic document.

Usually markup will either specify how something should be displayed or what something
means.

html, xml, latex…

SOLUTIONS?

Documents are written in plain text, then a program convert them into the final document

The same document can be used to generate files in other formats: latex, word, pdf or
even slides

Formating is done by the computer, output is always consistent

Fast and light

Can be used in version control systems

MARKUP LANGUAGES

Automatic generation of documents

Inline comments (not rendered in the final document)

Split one the document into several. Ex: main document, chapters and bibliography

Code executed and plots rendered in the document

MARKUP LANGUAGES: ADVANCED FEATURES

Extensively used for technical papers

Beautiful generated documents

Very powerful…

… and very heavy

Setup and document customization are complex

LATEX

LATEX: EXAMPLE

\documentclass{article}

\usepackage{graphicx}

\begin{document}

\title{Introduction to \LaTeX{}}

\author{Author's Name}

\maketitle

\begin{abstract}

The abstract text goes here.

\end{abstract}

\section{Introduction}

LATEX: EXAMPLE II

\documentclass[12pt]{article}

\usepackage{lingmacros}

\usepackage{tree-dvips}

\begin{document}

\section*{Notes for My Paper}

Don't forget to include examples of topicalization.

They look like this:

{\small

\enumsentence{Topicalization from sentential subject:\\

\shortex{7}{a John$_i$ [a & kltukl & [el &

 {\bf l-}oltoir & er & ngii$_i$ & a Mary]]}

{ & {\bf R-}clear & {\sc comp} &

WYSIWYG latex editor

Documents are generated in .lyx, a subset of latex

Can be used together with version control

Provides, by default, templates for many of the biggest scientific journals

LATEX ALTERNATIVE: LYX

LYX: EXAMPLE

LYX: EXAMPLE II

Also called Plain Text Markup or humane markup language

Provide a way of formating the document, while still being readable

Widely used on websites and code documentation

LIGHTWEIGHT MARKUP LANGUAGES

Markdown

reStructuredText (rst)

Asciidoc

LML: CURRENT OPTIONS

Created for minimal formating of web text

used everywhere: web, jupyter notebooks, r-markdown…

There is no standard, currently exist many flavours of it (github, commonmark, pandoc)

Originally not intended for documents, very limited

Different flavors and tools try to overcome this limitation

(+ pandoc)

MARKDOWN

MARKDOWN: EXAMPLE

Developed for book creation.

Limited number of users

Standardized and extensible, great documentation

Lack of resources makes that bugs or request take time to be fixed

ASCIIDOC

Originally intended for python documentation

medium sized but very tech-savvy community

Syntax is a little different than the other two

Very powerful and extensible

RESTRUCTUREDTEXT

Notetaking:

Markdown

Asciidoc

reStructuredText

Anything more serious:

reStructuredText

Latex/Lyx

WHICH ONE TO USE?

RESOURCES

https://chocolatey.org
choco install git vscode pandoc

https://chocolatey.org/

QUESTIONS?

