%% define a new subject s(1) = PDSubject('/Users/marsman/Documents/Werk/NIC/Teaching/Studenten/Nora_Parigi/data/Subject 5'); s(2) = PDSubject('/Users/marsman/Documents/Werk/NIC/Teaching/Studenten/Nora_Parigi/data/Subject 4') %% load data s(1) = s(1).loadData(); s(2) = s(2).loadData(); %% define trial markers s = s.setPattern('trial start', 'Fixation6s starting'); s = s.setPatternRelativeToPattern('trial start', 'trial end', +10.5e3); % dependency of trial_start %s = s.setPattern('trial end', 'Fixation15s starting'); s = s.setPattern('stimulus onset', 'Stimulus Presentation'); s = s.setPattern('stimulus offset', 'Fixation15s ending'); s = s.setLabel('information', 'Valence %s'); s = s.setLabel('information', 'TRIAL_VAR stim %s'); % s = s.setPattern('baseline start'); % s = s.setPattern('baseline end'); %% parse trials s = s.rebuild; % baseline is defined based on minimum value for baseline signal e = PDExperiment(s, 'Min'); % baseline is defined based on average value for baseline signal % e = PDExperiment(s, 'Average'); % calculate baseline corrected and filtered signals e = PDExperiment(s, 'Average'); e = e.preprocess(); plot(e); %% plot trials of the experiment e = build_averages(e);