423 lines
910 KiB
HTML
423 lines
910 KiB
HTML
|
<!DOCTYPE html>
|
||
|
|
||
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
|
||
|
<head>
|
||
|
|
||
|
<meta charset="utf-8" />
|
||
|
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||
|
<meta name="generator" content="pandoc" />
|
||
|
|
||
|
|
||
|
<meta name="author" content="Corneel Vermeulen" />
|
||
|
|
||
|
<meta name="date" content="2019-12-12" />
|
||
|
|
||
|
<title>Sample workflow DESeq2 for Tessa</title>
|
||
|
|
||
|
<script src="data:application/x-javascript;base64,LyohIGpRdWVyeSB2MS4xMS4zIHwgKGMpIDIwMDUsIDIwMTUgalF1ZXJ5IEZvdW5kYXRpb24sIEluYy4gfCBqcXVlcnkub3JnL2xpY2Vuc2UgKi8KIWZ1bmN0aW9uKGEsYil7Im9iamVjdCI9PXR5cGVvZiBtb2R1bGUmJiJvYmplY3QiPT10eXBlb2YgbW9kdWxlLmV4cG9ydHM/bW9kdWxlLmV4cG9ydHM9YS5kb2N1bWVudD9iKGEsITApOmZ1bmN0aW9uKGEpe2lmKCFhLmRvY3VtZW50KXRocm93IG5ldyBFcnJvcigialF1ZXJ5IHJlcXVpcmVzIGEgd2luZG93IHdpdGggYSBkb2N1bWVudCIpO3JldHVybiBiKGEpfTpiKGEpfSgidW5kZWZpbmVkIiE9dHlwZW9mIHdpbmRvdz93aW5kb3c6dGhpcyxmdW5jdGlvbihhLGIpe3ZhciBjPVtdLGQ9Yy5zbGljZSxlPWMuY29uY2F0LGY9Yy5wdXNoLGc9Yy5pbmRleE9mLGg9e30saT1oLnRvU3RyaW5nLGo9aC5oYXNPd25Qcm9wZXJ0eSxrPXt9LGw9IjEuMTEuMyIsbT1mdW5jdGlvbihhLGIpe3JldHVybiBuZXcgbS5mbi5pbml0KGEsYil9LG49L15bXHNcdUZFRkZceEEwXSt8W1xzXHVGRUZGXHhBMF0rJC9nLG89L14tbXMtLyxwPS8tKFtcZGEtel0pL2dpLHE9ZnVuY3Rpb24oYSxiKXtyZXR1cm4gYi50b1VwcGVyQ2FzZSgpfTttLmZuPW0ucHJvdG90eXBlPXtqcXVlcnk6bCxjb25zdHJ1Y3RvcjptLHNlbGVjdG9yOiIiLGxlbmd0aDowLHRvQXJyYXk6ZnVuY3Rpb24oKXtyZXR1cm4gZC5jYWxsKHRoaXMpfSxnZXQ6ZnVuY3Rpb24oYSl7cmV0dXJuIG51bGwhPWE/MD5hP3RoaXNbYSt0aGlzLmxlbmd0aF06dGhpc1thXTpkLmNhbGwodGhpcyl9LHB1c2hTdGFjazpmdW5jdGlvbihhKXt2YXIgYj1tLm1lcmdlKHRoaXMuY29uc3RydWN0b3IoKSxhKTtyZXR1cm4gYi5wcmV2T2JqZWN0PXRoaXMsYi5jb250ZXh0PXRoaXMuY29udGV4dCxifSxlYWNoOmZ1bmN0aW9uKGEsYil7cmV0dXJuIG0uZWFjaCh0aGlzLGEsYil9LG1hcDpmdW5jdGlvbihhKXtyZXR1cm4gdGhpcy5wdXNoU3RhY2sobS5tYXAodGhpcyxmdW5jdGlvbihiLGMpe3JldHVybiBhLmNhbGwoYixjLGIpfSkpfSxzbGljZTpmdW5jdGlvbigpe3JldHVybiB0aGlzLnB1c2hTdGFjayhkLmFwcGx5KHRoaXMsYXJndW1lbnRzKSl9LGZpcnN0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuZXEoMCl9LGxhc3Q6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5lcSgtMSl9LGVxOmZ1bmN0aW9uKGEpe3ZhciBiPXRoaXMubGVuZ3RoLGM9K2ErKDA+YT9iOjApO3JldHVybiB0aGlzLnB1c2hTdGFjayhjPj0wJiZiPmM/W3RoaXNbY11dOltdKX0sZW5kOmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMucHJldk9iamVjdHx8dGhpcy5jb25zdHJ1Y3RvcihudWxsKX0scHVzaDpmLHNvcnQ6Yy5zb3J0LHNwbGljZTpjLnNwbGljZX0sbS5leHRlbmQ9bS5mbi5leHRlbmQ9ZnVuY3Rpb24oKXt2YXIgYSxiLGMsZCxlLGYsZz1hcmd1bWVudHNbMF18fHt9LGg9MSxpPWFyZ3VtZW50cy5sZW5ndGgsaj0hMTtmb3IoImJvb2xlYW4iPT10eXBlb2YgZyYmKGo9ZyxnPWFyZ3VtZW50c1toXXx8e30saCsrKSwib2JqZWN0Ij09dHlwZW9mIGd8fG0uaXNGdW5jdGlvbihnKXx8KGc9e30pLGg9PT1pJiYoZz10aGlzLGgtLSk7aT5oO2grKylpZihudWxsIT0oZT1hcmd1bWVudHNbaF0pKWZvcihkIGluIGUpYT1nW2RdLGM9ZVtkXSxnIT09YyYmKGomJmMmJihtLmlzUGxhaW5PYmplY3QoYyl8fChiPW0uaXNBcnJheShjKSkpPyhiPyhiPSExLGY9YSYmbS5pc0FycmF5KGEpP2E6W10pOmY9YSYmbS5pc1BsYWluT2JqZWN0KGEpP2E6e30sZ1tkXT1tLmV4dGVuZChqLGYsYykpOnZvaWQgMCE9PWMmJihnW2RdPWMpKTtyZXR1cm4gZ30sbS5leHRlbmQoe2V4cGFuZG86ImpRdWVyeSIrKGwrTWF0aC5yYW5kb20oKSkucmVwbGFjZSgvXEQvZywiIiksaXNSZWFkeTohMCxlcnJvcjpmdW5jdGlvbihhKXt0aHJvdyBuZXcgRXJyb3IoYSl9LG5vb3A6ZnVuY3Rpb24oKXt9LGlzRnVuY3Rpb246ZnVuY3Rpb24oYSl7cmV0dXJuImZ1bmN0aW9uIj09PW0udHlwZShhKX0saXNBcnJheTpBcnJheS5pc0FycmF5fHxmdW5jdGlvbihhKXtyZXR1cm4iYXJyYXkiPT09bS50eXBlKGEpfSxpc1dpbmRvdzpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbCE9YSYmYT09YS53aW5kb3d9LGlzTnVtZXJpYzpmdW5jdGlvbihhKXtyZXR1cm4hbS5pc0FycmF5KGEpJiZhLXBhcnNlRmxvYXQoYSkrMT49MH0saXNFbXB0eU9iamVjdDpmdW5jdGlvbihhKXt2YXIgYjtmb3IoYiBpbiBhKXJldHVybiExO3JldHVybiEwfSxpc1BsYWluT2JqZWN0OmZ1bmN0aW9uKGEpe3ZhciBiO2lmKCFhfHwib2JqZWN0IiE9PW0udHlwZShhKXx8YS5ub2RlVHlwZXx8bS5pc1dpbmRvdyhhKSlyZXR1cm4hMTt0cnl7aWYoYS5jb25zdHJ1Y3RvciYmIWouY2FsbChhLCJjb25zdHJ1Y3RvciIpJiYhai5jYWxsKGEuY29uc3RydWN0b3IucHJvdG90eXBlLCJpc1Byb3RvdHlwZU9mIikpcmV0dXJuITF9Y2F0Y2goYyl7cmV0dXJuITF9aWYoay5vd25MYXN0KWZvcihiIGluIGEpcmV0dXJuIGouY2FsbChhLGIpO2ZvcihiIGluIGEpO3JldHVybiB2b2lkIDA9PT1ifHxqLmNhbGwoYSxiKX0sdHlwZTpmdW5jdGlvbihhKXtyZXR1cm4gbnVsbD09YT9hKyIiOiJvYmplY3QiPT10eXBlb2YgYXx8ImZ1bmN0aW9uIj09dHlwZW9mIGE/aFtpLmNhbGwoYSldfHwib2JqZWN0Ijp0eXBlb2YgYX0sZ2xvYmFsRXZhbDpmdW5jdGlvbihiKXtiJiZtLnRyaW0oYikmJihhLmV4ZWNTY3JpcHR8fGZ1bmN0aW9uKGIpe2EuZXZhbC5jYWxsKGEsYil9KShiKX0sY2FtZWxDYXNlOmZ1bmN0aW9uKGEpe3JldHVybiBhLnJlcGxhY2UobywibXMtIikucmVwbGFjZShwLHEpfSxub2RlTmFtZTpmdW5jdGlvbihhLGIpe3JldHVybiBhLm5vZGVOYW1lJiZhLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCk9PT1iLnRvTG93ZXJDYXNlKCl9LGVhY2g6ZnVuY3Rpb24oYSxiLGMpe3ZhciBkLGU9MCxmPWEubGVuZ3RoLGc9cihhKTtpZihjKXtpZihnKXtmb3IoO2Y+ZTtlKyspaWYoZD1iLmFwcGx5KGFbZV0sYyksZD09PSExKWJyZWFrfWVsc2UgZm9yKGUgaW4gYSlpZihkPWIuYXBwbHkoYVtlXSxjKSxkPT09ITEpYnJlYWt9ZWxzZSBpZ
|
||
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||
|
<link href="data:text/css;charset=utf-8,html%7Bfont%2Dfamily%3Asans%2Dserif%3B%2Dwebkit%2Dtext%2Dsize%2Dadjust%3A100%25%3B%2Dms%2Dtext%2Dsize%2Dadjust%3A100%25%7Dbody%7Bmargin%3A0%7Darticle%2Caside%2Cdetails%2Cfigcaption%2Cfigure%2Cfooter%2Cheader%2Chgroup%2Cmain%2Cmenu%2Cnav%2Csection%2Csummary%7Bdisplay%3Ablock%7Daudio%2Ccanvas%2Cprogress%2Cvideo%7Bdisplay%3Ainline%2Dblock%3Bvertical%2Dalign%3Abaseline%7Daudio%3Anot%28%5Bcontrols%5D%29%7Bdisplay%3Anone%3Bheight%3A0%7D%5Bhidden%5D%2Ctemplate%7Bdisplay%3Anone%7Da%7Bbackground%2Dcolor%3Atransparent%7Da%3Aactive%2Ca%3Ahover%7Boutline%3A0%7Dabbr%5Btitle%5D%7Bborder%2Dbottom%3A1px%20dotted%7Db%2Cstrong%7Bfont%2Dweight%3A700%7Ddfn%7Bfont%2Dstyle%3Aitalic%7Dh1%7Bmargin%3A%2E67em%200%3Bfont%2Dsize%3A2em%7Dmark%7Bcolor%3A%23000%3Bbackground%3A%23ff0%7Dsmall%7Bfont%2Dsize%3A80%25%7Dsub%2Csup%7Bposition%3Arelative%3Bfont%2Dsize%3A75%25%3Bline%2Dheight%3A0%3Bvertical%2Dalign%3Abaseline%7Dsup%7Btop%3A%2D%2E5em%7Dsub%7Bbottom%3A%2D%2E25em%7Dimg%7Bborder%3A0%7Dsvg%3Anot%28%3Aroot%29%7Boverflow%3Ahidden%7Dfigure%7Bmargin%3A1em%2040px%7Dhr%7Bheight%3A0%3B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%7Dpre%7Boverflow%3Aauto%7Dcode%2Ckbd%2Cpre%2Csamp%7Bfont%2Dfamily%3Amonospace%2Cmonospace%3Bfont%2Dsize%3A1em%7Dbutton%2Cinput%2Coptgroup%2Cselect%2Ctextarea%7Bmargin%3A0%3Bfont%3Ainherit%3Bcolor%3Ainherit%7Dbutton%7Boverflow%3Avisible%7Dbutton%2Cselect%7Btext%2Dtransform%3Anone%7Dbutton%2Chtml%20input%5Btype%3Dbutton%5D%2Cinput%5Btype%3Dreset%5D%2Cinput%5Btype%3Dsubmit%5D%7B%2Dwebkit%2Dappearance%3Abutton%3Bcursor%3Apointer%7Dbutton%5Bdisabled%5D%2Chtml%20input%5Bdisabled%5D%7Bcursor%3Adefault%7Dbutton%3A%3A%2Dmoz%2Dfocus%2Dinner%2Cinput%3A%3A%2Dmoz%2Dfocus%2Dinner%7Bpadding%3A0%3Bborder%3A0%7Dinput%7Bline%2Dheight%3Anormal%7Dinput%5Btype%3Dcheckbox%5D%2Cinput%5Btype%3Dradio%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Aborder%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Aborder%2Dbox%3Bbox%2Dsizing%3Aborder%2Dbox%3Bpadding%3A0%7Dinput%5Btype%3Dnumber%5D%3A%3A%2Dwebkit%2Dinner%2Dspin%2Dbutton%2Cinput%5Btype%3Dnumber%5D%3A%3A%2Dwebkit%2Douter%2Dspin%2Dbutton%7Bheight%3Aauto%7Dinput%5Btype%3Dsearch%5D%7B%2Dwebkit%2Dbox%2Dsizing%3Acontent%2Dbox%3B%2Dmoz%2Dbox%2Dsizing%3Acontent%2Dbox%3Bbox%2Dsizing%3Acontent%2Dbox%3B%2Dwebkit%2Dappearance%3Atextfield%7Dinput%5Btype%3Dsearch%5D%3A%3A%2Dwebkit%2Dsearch%2Dcancel%2Dbutton%2Cinput%5Btype%3Dsearch%5D%3A%3A%2Dwebkit%2Dsearch%2Ddecoration%7B%2Dwebkit%2Dappearance%3Anone%7Dfieldset%7Bpadding%3A%2E35em%20%2E625em%20%2E75em%3Bmargin%3A0%202px%3Bborder%3A1px%20solid%20silver%7Dlegend%7Bpadding%3A0%3Bborder%3A0%7Dtextarea%7Boverflow%3Aauto%7Doptgroup%7Bfont%2Dweight%3A700%7Dtable%7Bborder%2Dspacing%3A0%3Bborder%2Dcollapse%3Acollapse%7Dtd%2Cth%7Bpadding%3A0%7D%40media%20print%7B%2A%2C%3Aafter%2C%3Abefore%7Bcolor%3A%23000%21important%3Btext%2Dshadow%3Anone%21important%3Bbackground%3A0%200%21important%3B%2Dwebkit%2Dbox%2Dshadow%3Anone%21important%3Bbox%2Dshadow%3Anone%21important%7Da%2Ca%3Avisited%7Btext%2Ddecoration%3Aunderline%7Da%5Bhref%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28href%29%20%22%29%22%7Dabbr%5Btitle%5D%3Aafter%7Bcontent%3A%22%20%28%22%20attr%28title%29%20%22%29%22%7Da%5Bhref%5E%3D%22javascript%3A%22%5D%3Aafter%2Ca%5Bhref%5E%3D%22%23%22%5D%3Aafter%7Bcontent%3A%22%22%7Dblockquote%2Cpre%7Bborder%3A1px%20solid%20%23999%3Bpage%2Dbreak%2Dinside%3Aavoid%7Dthead%7Bdisplay%3Atable%2Dheader%2Dgroup%7Dimg%2Ctr%7Bpage%2Dbreak%2Dinside%3Aavoid%7Dimg%7Bmax%2Dwidth%3A100%25%21important%7Dh2%2Ch3%2Cp%7Borphans%3A3%3Bwidows%3A3%7Dh2%2Ch3%7Bpage%2Dbreak%2Dafter%3Aavoid%7D%2Enavbar%7Bdisplay%3Anone%7D%2Ebtn%3E%2Ecaret%2C%2Edropup%3E%2Ebtn%3E%2Ecaret%7Bborder%2Dtop%2Dcolor%3A%23000%21important%7D%2Elabel%7Bborder%3A1px%20solid%20%23000%7D%2Etable%7Bborder%2Dcollapse%3Acollapse%21important%7D%2Etable%20td%2C%2Etable%20th%7Bbackground%2Dcolor%3A%23fff%21important%7D%2Etable%2Dbordered%20td%2C%2Etable%2Dbordered%20th%7Bborder%3A1px%20solid%20%23ddd%21important%7D%7D%40font%2Dface%7Bfont%2Dfamily%3A%27Glyphicons%20Halflings%2
|
||
|
<script src="data:application/x-javascript;base64,LyohCiAqIEJvb3RzdHJhcCB2My4zLjUgKGh0dHA6Ly9nZXRib290c3RyYXAuY29tKQogKiBDb3B5cmlnaHQgMjAxMS0yMDE1IFR3aXR0ZXIsIEluYy4KICogTGljZW5zZWQgdW5kZXIgdGhlIE1JVCBsaWNlbnNlCiAqLwppZigidW5kZWZpbmVkIj09dHlwZW9mIGpRdWVyeSl0aHJvdyBuZXcgRXJyb3IoIkJvb3RzdHJhcCdzIEphdmFTY3JpcHQgcmVxdWlyZXMgalF1ZXJ5Iik7K2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0Ijt2YXIgYj1hLmZuLmpxdWVyeS5zcGxpdCgiICIpWzBdLnNwbGl0KCIuIik7aWYoYlswXTwyJiZiWzFdPDl8fDE9PWJbMF0mJjk9PWJbMV0mJmJbMl08MSl0aHJvdyBuZXcgRXJyb3IoIkJvb3RzdHJhcCdzIEphdmFTY3JpcHQgcmVxdWlyZXMgalF1ZXJ5IHZlcnNpb24gMS45LjEgb3IgaGlnaGVyIil9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dmFyIGE9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiYm9vdHN0cmFwIiksYj17V2Via2l0VHJhbnNpdGlvbjoid2Via2l0VHJhbnNpdGlvbkVuZCIsTW96VHJhbnNpdGlvbjoidHJhbnNpdGlvbmVuZCIsT1RyYW5zaXRpb246Im9UcmFuc2l0aW9uRW5kIG90cmFuc2l0aW9uZW5kIix0cmFuc2l0aW9uOiJ0cmFuc2l0aW9uZW5kIn07Zm9yKHZhciBjIGluIGIpaWYodm9pZCAwIT09YS5zdHlsZVtjXSlyZXR1cm57ZW5kOmJbY119O3JldHVybiExfWEuZm4uZW11bGF0ZVRyYW5zaXRpb25FbmQ9ZnVuY3Rpb24oYil7dmFyIGM9ITEsZD10aGlzO2EodGhpcykub25lKCJic1RyYW5zaXRpb25FbmQiLGZ1bmN0aW9uKCl7Yz0hMH0pO3ZhciBlPWZ1bmN0aW9uKCl7Y3x8YShkKS50cmlnZ2VyKGEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCl9O3JldHVybiBzZXRUaW1lb3V0KGUsYiksdGhpc30sYShmdW5jdGlvbigpe2Euc3VwcG9ydC50cmFuc2l0aW9uPWIoKSxhLnN1cHBvcnQudHJhbnNpdGlvbiYmKGEuZXZlbnQuc3BlY2lhbC5ic1RyYW5zaXRpb25FbmQ9e2JpbmRUeXBlOmEuc3VwcG9ydC50cmFuc2l0aW9uLmVuZCxkZWxlZ2F0ZVR5cGU6YS5zdXBwb3J0LnRyYW5zaXRpb24uZW5kLGhhbmRsZTpmdW5jdGlvbihiKXtyZXR1cm4gYShiLnRhcmdldCkuaXModGhpcyk/Yi5oYW5kbGVPYmouaGFuZGxlci5hcHBseSh0aGlzLGFyZ3VtZW50cyk6dm9pZCAwfX0pfSl9KGpRdWVyeSksK2Z1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKGIpe3JldHVybiB0aGlzLmVhY2goZnVuY3Rpb24oKXt2YXIgYz1hKHRoaXMpLGU9Yy5kYXRhKCJicy5hbGVydCIpO2V8fGMuZGF0YSgiYnMuYWxlcnQiLGU9bmV3IGQodGhpcykpLCJzdHJpbmciPT10eXBlb2YgYiYmZVtiXS5jYWxsKGMpfSl9dmFyIGM9J1tkYXRhLWRpc21pc3M9ImFsZXJ0Il0nLGQ9ZnVuY3Rpb24oYil7YShiKS5vbigiY2xpY2siLGMsdGhpcy5jbG9zZSl9O2QuVkVSU0lPTj0iMy4zLjUiLGQuVFJBTlNJVElPTl9EVVJBVElPTj0xNTAsZC5wcm90b3R5cGUuY2xvc2U9ZnVuY3Rpb24oYil7ZnVuY3Rpb24gYygpe2cuZGV0YWNoKCkudHJpZ2dlcigiY2xvc2VkLmJzLmFsZXJ0IikucmVtb3ZlKCl9dmFyIGU9YSh0aGlzKSxmPWUuYXR0cigiZGF0YS10YXJnZXQiKTtmfHwoZj1lLmF0dHIoImhyZWYiKSxmPWYmJmYucmVwbGFjZSgvLiooPz0jW15cc10qJCkvLCIiKSk7dmFyIGc9YShmKTtiJiZiLnByZXZlbnREZWZhdWx0KCksZy5sZW5ndGh8fChnPWUuY2xvc2VzdCgiLmFsZXJ0IikpLGcudHJpZ2dlcihiPWEuRXZlbnQoImNsb3NlLmJzLmFsZXJ0IikpLGIuaXNEZWZhdWx0UHJldmVudGVkKCl8fChnLnJlbW92ZUNsYXNzKCJpbiIpLGEuc3VwcG9ydC50cmFuc2l0aW9uJiZnLmhhc0NsYXNzKCJmYWRlIik/Zy5vbmUoImJzVHJhbnNpdGlvbkVuZCIsYykuZW11bGF0ZVRyYW5zaXRpb25FbmQoZC5UUkFOU0lUSU9OX0RVUkFUSU9OKTpjKCkpfTt2YXIgZT1hLmZuLmFsZXJ0O2EuZm4uYWxlcnQ9YixhLmZuLmFsZXJ0LkNvbnN0cnVjdG9yPWQsYS5mbi5hbGVydC5ub0NvbmZsaWN0PWZ1bmN0aW9uKCl7cmV0dXJuIGEuZm4uYWxlcnQ9ZSx0aGlzfSxhKGRvY3VtZW50KS5vbigiY2xpY2suYnMuYWxlcnQuZGF0YS1hcGkiLGMsZC5wcm90b3R5cGUuY2xvc2UpfShqUXVlcnkpLCtmdW5jdGlvbihhKXsidXNlIHN0cmljdCI7ZnVuY3Rpb24gYihiKXtyZXR1cm4gdGhpcy5lYWNoKGZ1bmN0aW9uKCl7dmFyIGQ9YSh0aGlzKSxlPWQuZGF0YSgiYnMuYnV0dG9uIiksZj0ib2JqZWN0Ij09dHlwZW9mIGImJmI7ZXx8ZC5kYXRhKCJicy5idXR0b24iLGU9bmV3IGModGhpcyxmKSksInRvZ2dsZSI9PWI/ZS50b2dnbGUoKTpiJiZlLnNldFN0YXRlKGIpfSl9dmFyIGM9ZnVuY3Rpb24oYixkKXt0aGlzLiRlbGVtZW50PWEoYiksdGhpcy5vcHRpb25zPWEuZXh0ZW5kKHt9LGMuREVGQVVMVFMsZCksdGhpcy5pc0xvYWRpbmc9ITF9O2MuVkVSU0lPTj0iMy4zLjUiLGMuREVGQVVMVFM9e2xvYWRpbmdUZXh0OiJsb2FkaW5nLi4uIn0sYy5wcm90b3R5cGUuc2V0U3RhdGU9ZnVuY3Rpb24oYil7dmFyIGM9ImRpc2FibGVkIixkPXRoaXMuJGVsZW1lbnQsZT1kLmlzKCJpbnB1dCIpPyJ2YWwiOiJodG1sIixmPWQuZGF0YSgpO2IrPSJUZXh0IixudWxsPT1mLnJlc2V0VGV4dCYmZC5kYXRhKCJyZXNldFRleHQiLGRbZV0oKSksc2V0VGltZW91dChhLnByb3h5KGZ1bmN0aW9uKCl7ZFtlXShudWxsPT1mW2JdP3RoaXMub3B0aW9uc1tiXTpmW2JdKSwibG9hZGluZ1RleHQiPT1iPyh0aGlzLmlzTG9hZGluZz0hMCxkLmFkZENsYXNzKGMpLmF0dHIoYyxjKSk6dGhpcy5pc0xvYWRpbmcmJih0aGlzLmlzTG9hZGluZz0hMSxkLnJlbW92ZUNsYXNzKGMpLnJlbW92ZUF0dHIoYykpfSx0aGlzKSwwKX0sYy5wcm90b3R5cGUudG9nZ2xlPWZ1bmN0aW9uKCl7dmFyIGE9ITAsYj10aGlzLiRlbGVtZW50LmNsb3Nlc3QoJ1tkYXRhLXRvZ2dsZT0iYnV0dG9ucyJdJyk7aWYoYi5sZW5ndGgpe3ZhciBjPXRoaXMuJGVsZW1lbnQuZmluZCgiaW5wdXQiKTsicmFkaW8iPT1jLnByb3AoInR5cGUiKT8oYy5wcm9wKCJjaGVja2VkIikmJihhPSExKSxiLmZpbmQoI
|
||
|
<script src="data:application/x-javascript;base64,LyoqCiogQHByZXNlcnZlIEhUTUw1IFNoaXYgMy43LjIgfCBAYWZhcmthcyBAamRhbHRvbiBAam9uX25lYWwgQHJlbSB8IE1JVC9HUEwyIExpY2Vuc2VkCiovCi8vIE9ubHkgcnVuIHRoaXMgY29kZSBpbiBJRSA4CmlmICghIXdpbmRvdy5uYXZpZ2F0b3IudXNlckFnZW50Lm1hdGNoKCJNU0lFIDgiKSkgewohZnVuY3Rpb24oYSxiKXtmdW5jdGlvbiBjKGEsYil7dmFyIGM9YS5jcmVhdGVFbGVtZW50KCJwIiksZD1hLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGEuZG9jdW1lbnRFbGVtZW50O3JldHVybiBjLmlubmVySFRNTD0ieDxzdHlsZT4iK2IrIjwvc3R5bGU+IixkLmluc2VydEJlZm9yZShjLmxhc3RDaGlsZCxkLmZpcnN0Q2hpbGQpfWZ1bmN0aW9uIGQoKXt2YXIgYT10LmVsZW1lbnRzO3JldHVybiJzdHJpbmciPT10eXBlb2YgYT9hLnNwbGl0KCIgIik6YX1mdW5jdGlvbiBlKGEsYil7dmFyIGM9dC5lbGVtZW50czsic3RyaW5nIiE9dHlwZW9mIGMmJihjPWMuam9pbigiICIpKSwic3RyaW5nIiE9dHlwZW9mIGEmJihhPWEuam9pbigiICIpKSx0LmVsZW1lbnRzPWMrIiAiK2EsaihiKX1mdW5jdGlvbiBmKGEpe3ZhciBiPXNbYVtxXV07cmV0dXJuIGJ8fChiPXt9LHIrKyxhW3FdPXIsc1tyXT1iKSxifWZ1bmN0aW9uIGcoYSxjLGQpe2lmKGN8fChjPWIpLGwpcmV0dXJuIGMuY3JlYXRlRWxlbWVudChhKTtkfHwoZD1mKGMpKTt2YXIgZTtyZXR1cm4gZT1kLmNhY2hlW2FdP2QuY2FjaGVbYV0uY2xvbmVOb2RlKCk6cC50ZXN0KGEpPyhkLmNhY2hlW2FdPWQuY3JlYXRlRWxlbShhKSkuY2xvbmVOb2RlKCk6ZC5jcmVhdGVFbGVtKGEpLCFlLmNhbkhhdmVDaGlsZHJlbnx8by50ZXN0KGEpfHxlLnRhZ1Vybj9lOmQuZnJhZy5hcHBlbmRDaGlsZChlKX1mdW5jdGlvbiBoKGEsYyl7aWYoYXx8KGE9YiksbClyZXR1cm4gYS5jcmVhdGVEb2N1bWVudEZyYWdtZW50KCk7Yz1jfHxmKGEpO2Zvcih2YXIgZT1jLmZyYWcuY2xvbmVOb2RlKCksZz0wLGg9ZCgpLGk9aC5sZW5ndGg7aT5nO2crKyllLmNyZWF0ZUVsZW1lbnQoaFtnXSk7cmV0dXJuIGV9ZnVuY3Rpb24gaShhLGIpe2IuY2FjaGV8fChiLmNhY2hlPXt9LGIuY3JlYXRlRWxlbT1hLmNyZWF0ZUVsZW1lbnQsYi5jcmVhdGVGcmFnPWEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudCxiLmZyYWc9Yi5jcmVhdGVGcmFnKCkpLGEuY3JlYXRlRWxlbWVudD1mdW5jdGlvbihjKXtyZXR1cm4gdC5zaGl2TWV0aG9kcz9nKGMsYSxiKTpiLmNyZWF0ZUVsZW0oYyl9LGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudD1GdW5jdGlvbigiaCxmIiwicmV0dXJuIGZ1bmN0aW9uKCl7dmFyIG49Zi5jbG9uZU5vZGUoKSxjPW4uY3JlYXRlRWxlbWVudDtoLnNoaXZNZXRob2RzJiYoIitkKCkuam9pbigpLnJlcGxhY2UoL1tcd1wtOl0rL2csZnVuY3Rpb24oYSl7cmV0dXJuIGIuY3JlYXRlRWxlbShhKSxiLmZyYWcuY3JlYXRlRWxlbWVudChhKSwnYygiJythKyciKSd9KSsiKTtyZXR1cm4gbn0iKSh0LGIuZnJhZyl9ZnVuY3Rpb24gaihhKXthfHwoYT1iKTt2YXIgZD1mKGEpO3JldHVybiF0LnNoaXZDU1N8fGt8fGQuaGFzQ1NTfHwoZC5oYXNDU1M9ISFjKGEsImFydGljbGUsYXNpZGUsZGlhbG9nLGZpZ2NhcHRpb24sZmlndXJlLGZvb3RlcixoZWFkZXIsaGdyb3VwLG1haW4sbmF2LHNlY3Rpb257ZGlzcGxheTpibG9ja31tYXJre2JhY2tncm91bmQ6I0ZGMDtjb2xvcjojMDAwfXRlbXBsYXRle2Rpc3BsYXk6bm9uZX0iKSksbHx8aShhLGQpLGF9dmFyIGssbCxtPSIzLjcuMiIsbj1hLmh0bWw1fHx7fSxvPS9ePHxeKD86YnV0dG9ufG1hcHxzZWxlY3R8dGV4dGFyZWF8b2JqZWN0fGlmcmFtZXxvcHRpb258b3B0Z3JvdXApJC9pLHA9L14oPzphfGJ8Y29kZXxkaXZ8ZmllbGRzZXR8aDF8aDJ8aDN8aDR8aDV8aDZ8aXxsYWJlbHxsaXxvbHxwfHF8c3BhbnxzdHJvbmd8c3R5bGV8dGFibGV8dGJvZHl8dGR8dGh8dHJ8dWwpJC9pLHE9Il9odG1sNXNoaXYiLHI9MCxzPXt9OyFmdW5jdGlvbigpe3RyeXt2YXIgYT1iLmNyZWF0ZUVsZW1lbnQoImEiKTthLmlubmVySFRNTD0iPHh5ej48L3h5ej4iLGs9ImhpZGRlbiJpbiBhLGw9MT09YS5jaGlsZE5vZGVzLmxlbmd0aHx8ZnVuY3Rpb24oKXtiLmNyZWF0ZUVsZW1lbnQoImEiKTt2YXIgYT1iLmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtyZXR1cm4idW5kZWZpbmVkIj09dHlwZW9mIGEuY2xvbmVOb2RlfHwidW5kZWZpbmVkIj09dHlwZW9mIGEuY3JlYXRlRG9jdW1lbnRGcmFnbWVudHx8InVuZGVmaW5lZCI9PXR5cGVvZiBhLmNyZWF0ZUVsZW1lbnR9KCl9Y2F0Y2goYyl7az0hMCxsPSEwfX0oKTt2YXIgdD17ZWxlbWVudHM6bi5lbGVtZW50c3x8ImFiYnIgYXJ0aWNsZSBhc2lkZSBhdWRpbyBiZGkgY2FudmFzIGRhdGEgZGF0YWxpc3QgZGV0YWlscyBkaWFsb2cgZmlnY2FwdGlvbiBmaWd1cmUgZm9vdGVyIGhlYWRlciBoZ3JvdXAgbWFpbiBtYXJrIG1ldGVyIG5hdiBvdXRwdXQgcGljdHVyZSBwcm9ncmVzcyBzZWN0aW9uIHN1bW1hcnkgdGVtcGxhdGUgdGltZSB2aWRlbyIsdmVyc2lvbjptLHNoaXZDU1M6bi5zaGl2Q1NTIT09ITEsc3VwcG9ydHNVbmtub3duRWxlbWVudHM6bCxzaGl2TWV0aG9kczpuLnNoaXZNZXRob2RzIT09ITEsdHlwZToiZGVmYXVsdCIsc2hpdkRvY3VtZW50OmosY3JlYXRlRWxlbWVudDpnLGNyZWF0ZURvY3VtZW50RnJhZ21lbnQ6aCxhZGRFbGVtZW50czplfTthLmh0bWw1PXQsaihiKX0odGhpcyxkb2N1bWVudCk7Cn07Cg=="></script>
|
||
|
<script src="data:application/x-javascript;base64,LyohIFJlc3BvbmQuanMgdjEuNC4yOiBtaW4vbWF4LXdpZHRoIG1lZGlhIHF1ZXJ5IHBvbHlmaWxsICogQ29weXJpZ2h0IDIwMTMgU2NvdHQgSmVobAogKiBMaWNlbnNlZCB1bmRlciBodHRwczovL2dpdGh1Yi5jb20vc2NvdHRqZWhsL1Jlc3BvbmQvYmxvYi9tYXN0ZXIvTElDRU5TRS1NSVQKICogICovCgovLyBPbmx5IHJ1biB0aGlzIGNvZGUgaW4gSUUgOAppZiAoISF3aW5kb3cubmF2aWdhdG9yLnVzZXJBZ2VudC5tYXRjaCgiTVNJRSA4IikpIHsKIWZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjthLm1hdGNoTWVkaWE9YS5tYXRjaE1lZGlhfHxmdW5jdGlvbihhKXt2YXIgYixjPWEuZG9jdW1lbnRFbGVtZW50LGQ9Yy5maXJzdEVsZW1lbnRDaGlsZHx8Yy5maXJzdENoaWxkLGU9YS5jcmVhdGVFbGVtZW50KCJib2R5IiksZj1hLmNyZWF0ZUVsZW1lbnQoImRpdiIpO3JldHVybiBmLmlkPSJtcS10ZXN0LTEiLGYuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7dG9wOi0xMDBlbSIsZS5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIixlLmFwcGVuZENoaWxkKGYpLGZ1bmN0aW9uKGEpe3JldHVybiBmLmlubmVySFRNTD0nJnNoeTs8c3R5bGUgbWVkaWE9IicrYSsnIj4gI21xLXRlc3QtMSB7IHdpZHRoOiA0MnB4OyB9PC9zdHlsZT4nLGMuaW5zZXJ0QmVmb3JlKGUsZCksYj00Mj09PWYub2Zmc2V0V2lkdGgsYy5yZW1vdmVDaGlsZChlKSx7bWF0Y2hlczpiLG1lZGlhOmF9fX0oYS5kb2N1bWVudCl9KHRoaXMpLGZ1bmN0aW9uKGEpeyJ1c2Ugc3RyaWN0IjtmdW5jdGlvbiBiKCl7dSghMCl9dmFyIGM9e307YS5yZXNwb25kPWMsYy51cGRhdGU9ZnVuY3Rpb24oKXt9O3ZhciBkPVtdLGU9ZnVuY3Rpb24oKXt2YXIgYj0hMTt0cnl7Yj1uZXcgYS5YTUxIdHRwUmVxdWVzdH1jYXRjaChjKXtiPW5ldyBhLkFjdGl2ZVhPYmplY3QoIk1pY3Jvc29mdC5YTUxIVFRQIil9cmV0dXJuIGZ1bmN0aW9uKCl7cmV0dXJuIGJ9fSgpLGY9ZnVuY3Rpb24oYSxiKXt2YXIgYz1lKCk7YyYmKGMub3BlbigiR0VUIixhLCEwKSxjLm9ucmVhZHlzdGF0ZWNoYW5nZT1mdW5jdGlvbigpezQhPT1jLnJlYWR5U3RhdGV8fDIwMCE9PWMuc3RhdHVzJiYzMDQhPT1jLnN0YXR1c3x8YihjLnJlc3BvbnNlVGV4dCl9LDQhPT1jLnJlYWR5U3RhdGUmJmMuc2VuZChudWxsKSl9O2lmKGMuYWpheD1mLGMucXVldWU9ZCxjLnJlZ2V4PXttZWRpYTovQG1lZGlhW15ce10rXHsoW15ce1x9XSpce1teXH1ce10qXH0pKy9naSxrZXlmcmFtZXM6L0AoPzpcLSg/Om98bW96fHdlYmtpdClcLSk/a2V5ZnJhbWVzW15ce10rXHsoPzpbXlx7XH1dKlx7W15cfVx7XSpcfSkrW15cfV0qXH0vZ2ksdXJsczovKHVybFwoKVsnIl0/KFteXC9cKSciXVteOlwpJyJdKylbJyJdPyhcKSkvZyxmaW5kU3R5bGVzOi9AbWVkaWEgKihbXlx7XSspXHsoW1xTXHNdKz8pJC8sb25seTovKG9ubHlccyspPyhbYS16QS1aXSspXHM/LyxtaW53Oi9cKFtcc10qbWluXC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpLyxtYXh3Oi9cKFtcc10qbWF4XC13aWR0aFxzKjpbXHNdKihbXHNdKlswLTlcLl0rKShweHxlbSlbXHNdKlwpL30sYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQ9YS5tYXRjaE1lZGlhJiZudWxsIT09YS5tYXRjaE1lZGlhKCJvbmx5IGFsbCIpJiZhLm1hdGNoTWVkaWEoIm9ubHkgYWxsIikubWF0Y2hlcywhYy5tZWRpYVF1ZXJpZXNTdXBwb3J0ZWQpe3ZhciBnLGgsaSxqPWEuZG9jdW1lbnQsaz1qLmRvY3VtZW50RWxlbWVudCxsPVtdLG09W10sbj1bXSxvPXt9LHA9MzAscT1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJoZWFkIilbMF18fGsscj1qLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJiYXNlIilbMF0scz1xLmdldEVsZW1lbnRzQnlUYWdOYW1lKCJsaW5rIiksdD1mdW5jdGlvbigpe3ZhciBhLGI9ai5jcmVhdGVFbGVtZW50KCJkaXYiKSxjPWouYm9keSxkPWsuc3R5bGUuZm9udFNpemUsZT1jJiZjLnN0eWxlLmZvbnRTaXplLGY9ITE7cmV0dXJuIGIuc3R5bGUuY3NzVGV4dD0icG9zaXRpb246YWJzb2x1dGU7Zm9udC1zaXplOjFlbTt3aWR0aDoxZW0iLGN8fChjPWY9ai5jcmVhdGVFbGVtZW50KCJib2R5IiksYy5zdHlsZS5iYWNrZ3JvdW5kPSJub25lIiksay5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5zdHlsZS5mb250U2l6ZT0iMTAwJSIsYy5hcHBlbmRDaGlsZChiKSxmJiZrLmluc2VydEJlZm9yZShjLGsuZmlyc3RDaGlsZCksYT1iLm9mZnNldFdpZHRoLGY/ay5yZW1vdmVDaGlsZChjKTpjLnJlbW92ZUNoaWxkKGIpLGsuc3R5bGUuZm9udFNpemU9ZCxlJiYoYy5zdHlsZS5mb250U2l6ZT1lKSxhPWk9cGFyc2VGbG9hdChhKX0sdT1mdW5jdGlvbihiKXt2YXIgYz0iY2xpZW50V2lkdGgiLGQ9a1tjXSxlPSJDU1MxQ29tcGF0Ij09PWouY29tcGF0TW9kZSYmZHx8ai5ib2R5W2NdfHxkLGY9e30sbz1zW3MubGVuZ3RoLTFdLHI9KG5ldyBEYXRlKS5nZXRUaW1lKCk7aWYoYiYmZyYmcD5yLWcpcmV0dXJuIGEuY2xlYXJUaW1lb3V0KGgpLGg9YS5zZXRUaW1lb3V0KHUscCksdm9pZCAwO2c9cjtmb3IodmFyIHYgaW4gbClpZihsLmhhc093blByb3BlcnR5KHYpKXt2YXIgdz1sW3ZdLHg9dy5taW53LHk9dy5tYXh3LHo9bnVsbD09PXgsQT1udWxsPT09eSxCPSJlbSI7eCYmKHg9cGFyc2VGbG9hdCh4KSooeC5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSkseSYmKHk9cGFyc2VGbG9hdCh5KSooeS5pbmRleE9mKEIpPi0xP2l8fHQoKToxKSksdy5oYXNxdWVyeSYmKHomJkF8fCEoenx8ZT49eCl8fCEoQXx8eT49ZSkpfHwoZlt3Lm1lZGlhXXx8KGZbdy5tZWRpYV09W10pLGZbdy5tZWRpYV0ucHVzaChtW3cucnVsZXNdKSl9Zm9yKHZhciBDIGluIG4pbi5oYXNPd25Qcm9wZXJ0eShDKSYmbltDXSYmbltDXS5wYXJlbnROb2RlPT09cSYmcS5yZW1vdmVDaGlsZChuW0NdKTtuLmxlbmd0aD0wO2Zvcih2YXIgRCBpbiBmKWlmKGYuaGFzT3duUHJvcGVydHkoRCkpe3ZhciBFPWouY3JlYXRlRWxlbWVudCgic3R5bGUiKSxGPWZbRF0uam9pbigiXG4iKTtFLnR5cGU9InRleHQvY3NzIixFLm1lZGlhPUQscS5pbnNlc
|
||
|
<script src="data:application/x-javascript;base64,CgovKioKICogalF1ZXJ5IFBsdWdpbjogU3RpY2t5IFRhYnMKICoKICogQGF1dGhvciBBaWRhbiBMaXN0ZXIgPGFpZGFuQHBocC5uZXQ+CiAqIGFkYXB0ZWQgYnkgUnViZW4gQXJzbGFuIHRvIGFjdGl2YXRlIHBhcmVudCB0YWJzIHRvbwogKiBodHRwOi8vd3d3LmFpZGFubGlzdGVyLmNvbS8yMDE0LzAzL3BlcnNpc3RpbmctdGhlLXRhYi1zdGF0ZS1pbi1ib290c3RyYXAvCiAqLwooZnVuY3Rpb24oJCkgewogICJ1c2Ugc3RyaWN0IjsKICAkLmZuLnJtYXJrZG93blN0aWNreVRhYnMgPSBmdW5jdGlvbigpIHsKICAgIHZhciBjb250ZXh0ID0gdGhpczsKICAgIC8vIFNob3cgdGhlIHRhYiBjb3JyZXNwb25kaW5nIHdpdGggdGhlIGhhc2ggaW4gdGhlIFVSTCwgb3IgdGhlIGZpcnN0IHRhYgogICAgdmFyIHNob3dTdHVmZkZyb21IYXNoID0gZnVuY3Rpb24oKSB7CiAgICAgIHZhciBoYXNoID0gd2luZG93LmxvY2F0aW9uLmhhc2g7CiAgICAgIHZhciBzZWxlY3RvciA9IGhhc2ggPyAnYVtocmVmPSInICsgaGFzaCArICciXScgOiAnbGkuYWN0aXZlID4gYSc7CiAgICAgIHZhciAkc2VsZWN0b3IgPSAkKHNlbGVjdG9yLCBjb250ZXh0KTsKICAgICAgaWYoJHNlbGVjdG9yLmRhdGEoJ3RvZ2dsZScpID09PSAidGFiIikgewogICAgICAgICRzZWxlY3Rvci50YWIoJ3Nob3cnKTsKICAgICAgICAvLyB3YWxrIHVwIHRoZSBhbmNlc3RvcnMgb2YgdGhpcyBlbGVtZW50LCBzaG93IGFueSBoaWRkZW4gdGFicwogICAgICAgICRzZWxlY3Rvci5wYXJlbnRzKCcuc2VjdGlvbi50YWJzZXQnKS5lYWNoKGZ1bmN0aW9uKGksIGVsbSkgewogICAgICAgICAgdmFyIGxpbmsgPSAkKCdhW2hyZWY9IiMnICsgJChlbG0pLmF0dHIoJ2lkJykgKyAnIl0nKTsKICAgICAgICAgIGlmKGxpbmsuZGF0YSgndG9nZ2xlJykgPT09ICJ0YWIiKSB7CiAgICAgICAgICAgIGxpbmsudGFiKCJzaG93Iik7CiAgICAgICAgICB9CiAgICAgICAgfSk7CiAgICAgIH0KICAgIH07CgoKICAgIC8vIFNldCB0aGUgY29ycmVjdCB0YWIgd2hlbiB0aGUgcGFnZSBsb2FkcwogICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CgogICAgLy8gU2V0IHRoZSBjb3JyZWN0IHRhYiB3aGVuIGEgdXNlciB1c2VzIHRoZWlyIGJhY2svZm9yd2FyZCBidXR0b24KICAgICQod2luZG93KS5vbignaGFzaGNoYW5nZScsIGZ1bmN0aW9uKCkgewogICAgICBzaG93U3R1ZmZGcm9tSGFzaChjb250ZXh0KTsKICAgIH0pOwoKICAgIC8vIENoYW5nZSB0aGUgVVJMIHdoZW4gdGFicyBhcmUgY2xpY2tlZAogICAgJCgnYScsIGNvbnRleHQpLm9uKCdjbGljaycsIGZ1bmN0aW9uKGUpIHsKICAgICAgaGlzdG9yeS5wdXNoU3RhdGUobnVsbCwgbnVsbCwgdGhpcy5ocmVmKTsKICAgICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CiAgICB9KTsKCiAgICByZXR1cm4gdGhpczsKICB9Owp9KGpRdWVyeSkpOwoKd2luZG93LmJ1aWxkVGFic2V0cyA9IGZ1bmN0aW9uKHRvY0lEKSB7CgogIC8vIGJ1aWxkIGEgdGFic2V0IGZyb20gYSBzZWN0aW9uIGRpdiB3aXRoIHRoZSAudGFic2V0IGNsYXNzCiAgZnVuY3Rpb24gYnVpbGRUYWJzZXQodGFic2V0KSB7CgogICAgLy8gY2hlY2sgZm9yIGZhZGUgYW5kIHBpbGxzIG9wdGlvbnMKICAgIHZhciBmYWRlID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtZmFkZSIpOwogICAgdmFyIHBpbGxzID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtcGlsbHMiKTsKICAgIHZhciBuYXZDbGFzcyA9IHBpbGxzID8gIm5hdi1waWxscyIgOiAibmF2LXRhYnMiOwoKICAgIC8vIGRldGVybWluZSB0aGUgaGVhZGluZyBsZXZlbCBvZiB0aGUgdGFic2V0IGFuZCB0YWJzCiAgICB2YXIgbWF0Y2ggPSB0YWJzZXQuYXR0cignY2xhc3MnKS5tYXRjaCgvbGV2ZWwoXGQpIC8pOwogICAgaWYgKG1hdGNoID09PSBudWxsKQogICAgICByZXR1cm47CiAgICB2YXIgdGFic2V0TGV2ZWwgPSBOdW1iZXIobWF0Y2hbMV0pOwogICAgdmFyIHRhYkxldmVsID0gdGFic2V0TGV2ZWwgKyAxOwoKICAgIC8vIGZpbmQgYWxsIHN1YmhlYWRpbmdzIGltbWVkaWF0ZWx5IGJlbG93CiAgICB2YXIgdGFicyA9IHRhYnNldC5maW5kKCJkaXYuc2VjdGlvbi5sZXZlbCIgKyB0YWJMZXZlbCk7CiAgICBpZiAoIXRhYnMubGVuZ3RoKQogICAgICByZXR1cm47CgogICAgLy8gY3JlYXRlIHRhYmxpc3QgYW5kIHRhYi1jb250ZW50IGVsZW1lbnRzCiAgICB2YXIgdGFiTGlzdCA9ICQoJzx1bCBjbGFzcz0ibmF2ICcgKyBuYXZDbGFzcyArICciIHJvbGU9InRhYmxpc3QiPjwvdWw+Jyk7CiAgICAkKHRhYnNbMF0pLmJlZm9yZSh0YWJMaXN0KTsKICAgIHZhciB0YWJDb250ZW50ID0gJCgnPGRpdiBjbGFzcz0idGFiLWNvbnRlbnQiPjwvZGl2PicpOwogICAgJCh0YWJzWzBdKS5iZWZvcmUodGFiQ29udGVudCk7CgogICAgLy8gYnVpbGQgdGhlIHRhYnNldAogICAgdmFyIGFjdGl2ZVRhYiA9IDA7CiAgICB0YWJzLmVhY2goZnVuY3Rpb24oaSkgewoKICAgICAgLy8gZ2V0IHRoZSB0YWIgZGl2CiAgICAgIHZhciB0YWIgPSAkKHRhYnNbaV0pOwoKICAgICAgLy8gZ2V0IHRoZSBpZCB0aGVuIHNhbml0aXplIGl0IGZvciB1c2Ugd2l0aCBib290c3RyYXAgdGFicwogICAgICB2YXIgaWQgPSB0YWIuYXR0cignaWQnKTsKCiAgICAgIC8vIHNlZSBpZiB0aGlzIGlzIG1hcmtlZCBhcyB0aGUgYWN0aXZlIHRhYgogICAgICBpZiAodGFiLmhhc0NsYXNzKCdhY3RpdmUnKSkKICAgICAgICBhY3RpdmVUYWIgPSBpOwoKICAgICAgLy8gcmVtb3ZlIGFueSB0YWJsZSBvZiBjb250ZW50cyBlbnRyaWVzIGFzc29jaWF0ZWQgd2l0aAogICAgICAvLyB0aGlzIElEIChzaW5jZSB3ZSdsbCBiZSByZW1vdmluZyB0aGUgaGVhZGluZyBlbGVtZW50KQogICAgICAkKCJkaXYjIiArIHRvY0lEICsgIiBsaSBhW2hyZWY9JyMiICsgaWQgKyAiJ10iKS5wYXJlbnQoKS5yZW1vdmUoKTsKCiAgICAgIC8vIHNhbml0aXplIHRoZSBpZCBmb3IgdXNlIHdpdGggYm9vdHN0cmFwIHRhYnMKICAgICAgaWQgPSBpZC5yZXBsYWNlKC9bLlwvPyYhIzw+XS9nLCAnJykucmVwbGFjZSgvXHMvZywgJ
|
||
|
<link href="data:text/css;charset=utf-8,%2Ehljs%2Dliteral%20%7B%0Acolor%3A%20%23990073%3B%0A%7D%0A%2Ehljs%2Dnumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0A%2Ehljs%2Dcomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%2Ehljs%2Dkeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Ehljs%2Dstring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" />
|
||
|
<script src="data:application/x-javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0K
|
||
|
|
||
|
<style type="text/css">code{white-space: pre;}</style>
|
||
|
<style type="text/css">
|
||
|
pre:not([class]) {
|
||
|
background-color: white;
|
||
|
}
|
||
|
</style>
|
||
|
<script type="text/javascript">
|
||
|
if (window.hljs) {
|
||
|
hljs.configure({languages: []});
|
||
|
hljs.initHighlightingOnLoad();
|
||
|
if (document.readyState && document.readyState === "complete") {
|
||
|
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
|
||
|
}
|
||
|
}
|
||
|
</script>
|
||
|
|
||
|
|
||
|
|
||
|
<style type="text/css">
|
||
|
h1 {
|
||
|
font-size: 34px;
|
||
|
}
|
||
|
h1.title {
|
||
|
font-size: 38px;
|
||
|
}
|
||
|
h2 {
|
||
|
font-size: 30px;
|
||
|
}
|
||
|
h3 {
|
||
|
font-size: 24px;
|
||
|
}
|
||
|
h4 {
|
||
|
font-size: 18px;
|
||
|
}
|
||
|
h5 {
|
||
|
font-size: 16px;
|
||
|
}
|
||
|
h6 {
|
||
|
font-size: 12px;
|
||
|
}
|
||
|
.table th:not([align]) {
|
||
|
text-align: left;
|
||
|
}
|
||
|
</style>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<style type="text/css">
|
||
|
.main-container {
|
||
|
max-width: 940px;
|
||
|
margin-left: auto;
|
||
|
margin-right: auto;
|
||
|
}
|
||
|
code {
|
||
|
color: inherit;
|
||
|
background-color: rgba(0, 0, 0, 0.04);
|
||
|
}
|
||
|
img {
|
||
|
max-width:100%;
|
||
|
height: auto;
|
||
|
}
|
||
|
.tabbed-pane {
|
||
|
padding-top: 12px;
|
||
|
}
|
||
|
.html-widget {
|
||
|
margin-bottom: 20px;
|
||
|
}
|
||
|
button.code-folding-btn:focus {
|
||
|
outline: none;
|
||
|
}
|
||
|
summary {
|
||
|
display: list-item;
|
||
|
}
|
||
|
</style>
|
||
|
|
||
|
|
||
|
|
||
|
<!-- tabsets -->
|
||
|
|
||
|
<style type="text/css">
|
||
|
.tabset-dropdown > .nav-tabs {
|
||
|
display: inline-table;
|
||
|
max-height: 500px;
|
||
|
min-height: 44px;
|
||
|
overflow-y: auto;
|
||
|
background: white;
|
||
|
border: 1px solid #ddd;
|
||
|
border-radius: 4px;
|
||
|
}
|
||
|
|
||
|
.tabset-dropdown > .nav-tabs > li.active:before {
|
||
|
content: "";
|
||
|
font-family: 'Glyphicons Halflings';
|
||
|
display: inline-block;
|
||
|
padding: 10px;
|
||
|
border-right: 1px solid #ddd;
|
||
|
}
|
||
|
|
||
|
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
|
||
|
content: "";
|
||
|
border: none;
|
||
|
}
|
||
|
|
||
|
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
|
||
|
content: "";
|
||
|
font-family: 'Glyphicons Halflings';
|
||
|
display: inline-block;
|
||
|
padding: 10px;
|
||
|
border-right: 1px solid #ddd;
|
||
|
}
|
||
|
|
||
|
.tabset-dropdown > .nav-tabs > li.active {
|
||
|
display: block;
|
||
|
}
|
||
|
|
||
|
.tabset-dropdown > .nav-tabs > li > a,
|
||
|
.tabset-dropdown > .nav-tabs > li > a:focus,
|
||
|
.tabset-dropdown > .nav-tabs > li > a:hover {
|
||
|
border: none;
|
||
|
display: inline-block;
|
||
|
border-radius: 4px;
|
||
|
}
|
||
|
|
||
|
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
|
||
|
display: block;
|
||
|
float: none;
|
||
|
}
|
||
|
|
||
|
.tabset-dropdown > .nav-tabs > li {
|
||
|
display: none;
|
||
|
}
|
||
|
</style>
|
||
|
|
||
|
<script>
|
||
|
$(document).ready(function () {
|
||
|
window.buildTabsets("TOC");
|
||
|
});
|
||
|
|
||
|
$(document).ready(function () {
|
||
|
$('.tabset-dropdown > .nav-tabs > li').click(function () {
|
||
|
$(this).parent().toggleClass('nav-tabs-open')
|
||
|
});
|
||
|
});
|
||
|
</script>
|
||
|
|
||
|
<!-- code folding -->
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
</head>
|
||
|
|
||
|
<body>
|
||
|
|
||
|
|
||
|
<div class="container-fluid main-container">
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<div class="fluid-row" id="header">
|
||
|
|
||
|
|
||
|
|
||
|
<h1 class="title toc-ignore">Sample workflow DESeq2 for Tessa</h1>
|
||
|
<h4 class="author">Corneel Vermeulen</h4>
|
||
|
<h4 class="date">2019-12-12</h4>
|
||
|
|
||
|
</div>
|
||
|
|
||
|
|
||
|
<div id="gsk-asthma-remission-project" class="section level3">
|
||
|
<h3>GSK asthma remission project</h3>
|
||
|
<p>Hoi Tesssa, Dit is een aangepaste versie van het tutorial script dat ik voor Ilse maakte, vanwege een <a href="#%20https://support.bioconductor.org/p/95695/">verandering in DESeq2 VERSION 1.16.0</a>. Omdat de orginele count table erg groot is gebruikt het script een miniatuur versie gemaakt van 1000 willekeurige features.</p>
|
||
|
</div>
|
||
|
<div id="preliminaries" class="section level3">
|
||
|
<h3>Preliminaries</h3>
|
||
|
<p>load all required packages</p>
|
||
|
<pre class="r"><code>library("DESeq2")
|
||
|
library("gplots")</code></pre>
|
||
|
</div>
|
||
|
<div id="load-data" class="section level3">
|
||
|
<h3>load data</h3>
|
||
|
<p>Hier laad je de count table and de database respectievelijk. Je kunt hier evt. je werkmap instellen.</p>
|
||
|
<pre class="r"><code>#setwd("/path/to/your/wd")
|
||
|
CT<-read.delim("sample.htseq.txt.table", header = TRUE, sep = "\t",
|
||
|
quote = "", fill = TRUE, comment.char = "")
|
||
|
db <-read.csv("db.csv",header=T,sep=";",dec=",")</code></pre>
|
||
|
</div>
|
||
|
<div id="prepare-data" class="section level3">
|
||
|
<h3>Prepare data</h3>
|
||
|
<p>Dit is het lastigste stuk. De sample_IDs zijn gemangeld tijdens het verwerken van de samples en dat maakt het matchen aan de klinische data een tijdrovende klus.</p>
|
||
|
<pre class="r"><code>head(colnames(CT))</code></pre>
|
||
|
<pre><code>## [1] "probe" "X101_NORM.htseq.txt" "X102_NORM.htseq.txt"
|
||
|
## [4] "X104_NORM.htseq.txt" "X105_NORM_.htseq.txt" "X106_NORM.htseq.txt"</code></pre>
|
||
|
<pre class="r"><code>head(db$rnaseq.id)</code></pre>
|
||
|
<pre><code>## [1] X9_0_T06_90304 X613_0_T07_90064 X377_0_T06_90091 X535_0_T07_90052
|
||
|
## [5] X433_0_T06_90135 X25_0_T06_90258
|
||
|
## 232 Levels: X101_NORM_ X102_NORM_ X104_NORM_ X105_NORM_ ... X99_NORM_</code></pre>
|
||
|
<p>Ik heb al wat werk verzet door in de db overal een “X” voor te plakken en alle streepjes te vervangen door underscores. Nu moeten we nog de “.htseq.txt” kwijtraken. Zie ook dat sommige samples “NORM” en anderen “NORM_” genoemd zijn. Verder zijn er meerdere controle samples. Veel lelijke code hier, en waarschijnlijk niet bruikbaar voor jou:</p>
|
||
|
<pre class="r"><code>colnames(CT)[1] <- ""
|
||
|
cn.CT <- colnames(CT)
|
||
|
cn.CT <- cn.CT[2:length(cn.CT)] #drop the empty first cell
|
||
|
cn.CT <- gsub(".htseq.txt", "", cn.CT) # remove the suffix
|
||
|
cn.CT <- gsub("NORM.{0,}", "NORM_", cn.CT) # add one trailing underscore
|
||
|
cn.all <- as.character(db$rnaseq.id)
|
||
|
idx <- match(cn.CT,cn.all) #match the clinical data to the correct samples
|
||
|
idx[which(is.na(idx))] <- which(cn.all == "X263_110_T04_90226") # multiple ref samples
|
||
|
coldata <- db[idx,]
|
||
|
rownames(coldata) <- cn.CT
|
||
|
countdata <- CT[,c(2:ncol(CT))]
|
||
|
rownames(countdata) <- CT[,1]
|
||
|
coldata$batch.extract[which(coldata$rnaseq.id == "X263_110_T04_90226")] <- seq(1:6)
|
||
|
coldata$batch.extract<-as.factor(coldata$batch.extract) #batch nrs are factor levels</code></pre>
|
||
|
</div>
|
||
|
<div id="qc-filter" class="section level3">
|
||
|
<h3>QC-filter</h3>
|
||
|
<p>We gebruiken alleen samples die de QC doorstaan en de beste reference sample (#2).</p>
|
||
|
<pre class="r"><code>qc.pass <- scan("rnaseqids_qc4_pass_plusref2.txt", what = "character")
|
||
|
idx.qc.pass <- which(coldata$rnaseq.id %in% qc.pass)
|
||
|
idx.ref2 <- which(coldata$rnaseq.id == "X263_110_T04_90226" & coldata$batch.extract == 2)
|
||
|
idx.qc.pass <- c(idx.qc.pass,idx.ref2)
|
||
|
coldata <- coldata[idx.qc.pass,]
|
||
|
countdata <- countdata[,idx.qc.pass]
|
||
|
colnames(countdata) <- NULL # fixes error</code></pre>
|
||
|
</div>
|
||
|
<div id="exploratory-analysis" class="section level3">
|
||
|
<h3>Exploratory analysis</h3>
|
||
|
<p>Nu we onze data klaar hebben, wordt alles veel eenvoudiger: We converteren onze count table naar een DESeqDataSet. We geven nog geen model op.</p>
|
||
|
<pre class="r"><code>dds <- DESeqDataSetFromMatrix(countData = countdata,
|
||
|
colData = coldata,
|
||
|
design = ~ 1)</code></pre>
|
||
|
<p>Dan kijken we in een PCA of onze dataset zich gedraagt. Het is noodzakelijk de ruwe count data te transformeren daarvoor. Omdat we teveel samples hebben om een rlog transformatie te doen gebruiken we een <a href="https://support.bioconductor.org/p/77122/">trucje</a>.</p>
|
||
|
<pre class="r"><code>dds <- estimateSizeFactors(dds)
|
||
|
baseMean <- rowMeans(counts(dds, normalized=TRUE))
|
||
|
idx.sub <- sample(which(baseMean > 5), 100)
|
||
|
dds.sub <- dds[idx.sub, ]
|
||
|
dds.sub <- estimateDispersions(dds.sub)
|
||
|
dispersionFunction(dds) <- dispersionFunction(dds.sub)
|
||
|
vsd <- varianceStabilizingTransformation(dds, blind=FALSE)
|
||
|
plotPCA(vsd, intgroup = "gender")</code></pre>
|
||
|
<p><img src="
|
||
|
</div>
|
||
|
<div id="differential-expression" class="section level3">
|
||
|
<h3>Differential expression</h3>
|
||
|
<p>Tenslotte het echte werk. We voeren ons model in en creeren een nieuwe DESeqDataSet (de oude wordt daarbij overschreven). Dan testen we of er een overall verschil is tussen de levels van asthma. Vervolgens kijken we naar een specifiek contrast.</p>
|
||
|
<pre class="r"><code>dds <- DESeqDataSetFromMatrix(countData = countdata,
|
||
|
colData = coldata,
|
||
|
design = ~ gender + asthma.ics)
|
||
|
# Overall test (takes long time to run)
|
||
|
dds <- DESeq(dds, test="LRT", full=~ gender + asthma.ics, reduced=~ gender)
|
||
|
res <- results(dds)
|
||
|
res$symbol <- mcols(dds)$symbol
|
||
|
head(res[order(res$pvalue),],4)</code></pre>
|
||
|
<pre><code>## log2 fold change (MLE): asthma.ics PersA no ICS vs ClinR
|
||
|
## LRT p-value: '~ gender + asthma.ics' vs '~ gender'
|
||
|
## DataFrame with 4 rows and 6 columns
|
||
|
## baseMean log2FoldChange lfcSE
|
||
|
## <numeric> <numeric> <numeric>
|
||
|
## ENSG00000130779 1789.38912546738 0.0478949207887351 0.0654612878978894
|
||
|
## ENSG00000119535 215.440807373427 0.206590053580329 0.465871144277395
|
||
|
## ENSG00000182957 562.782379494973 0.097333381899491 0.100818494331977
|
||
|
## ENSG00000100604 16.9398710766147 -0.5828701888104 0.239816945028832
|
||
|
## stat pvalue padj
|
||
|
## <numeric> <numeric> <numeric>
|
||
|
## ENSG00000130779 58.7554612212198 5.29625676133409e-12 3.49023320571917e-09
|
||
|
## ENSG00000119535 52.7191486758725 9.75644624431816e-11 3.21474903750283e-08
|
||
|
## ENSG00000182957 48.8988210026882 6.1296215354578e-10 1.34647353062223e-07
|
||
|
## ENSG00000100604 43.5464068704941 7.96970085754099e-09 1.31300821627988e-06</code></pre>
|
||
|
<pre class="r"><code>summary(res)</code></pre>
|
||
|
<pre><code>##
|
||
|
## out of 983 with nonzero total read count
|
||
|
## adjusted p-value < 0.1
|
||
|
## LFC > 0 (up) : 75, 7.6%
|
||
|
## LFC < 0 (down) : 63, 6.4%
|
||
|
## outliers [1] : 0, 0%
|
||
|
## low counts [2] : 326, 33%
|
||
|
## (mean count < 1)
|
||
|
## [1] see 'cooksCutoff' argument of ?results
|
||
|
## [2] see 'independentFiltering' argument of ?results</code></pre>
|
||
|
<pre class="r"><code>sum(res$padj < 0.05, na.rm=T)</code></pre>
|
||
|
<pre><code>## [1] 94</code></pre>
|
||
|
<pre class="r"><code>topGene <- rownames(res)[which.min(res$padj)]
|
||
|
plotCounts(dds, gene=topGene, intgroup=c("asthma.ics"))</code></pre>
|
||
|
<p><img src="
|
||
|
<p>Het feature met de meeste variatie tussen de groepen is ENSG00000130779, maar waarschijnlijk ben je geinteresseerd in een specifiek contrast, bijvoorbeeld asthma versus healthy:</p>
|
||
|
<pre class="r"><code>dds.wald <- DESeq(dds, test="Wald", betaPrior = TRUE)</code></pre>
|
||
|
<pre><code>## using pre-existing size factors</code></pre>
|
||
|
<pre><code>## estimating dispersions</code></pre>
|
||
|
<pre><code>## found already estimated dispersions, replacing these</code></pre>
|
||
|
<pre><code>## gene-wise dispersion estimates</code></pre>
|
||
|
<pre><code>## mean-dispersion relationship</code></pre>
|
||
|
<pre><code>## final dispersion estimates</code></pre>
|
||
|
<pre><code>## fitting model and testing</code></pre>
|
||
|
<pre><code>## -- replacing outliers and refitting for 33 genes
|
||
|
## -- DESeq argument 'minReplicatesForReplace' = 7
|
||
|
## -- original counts are preserved in counts(dds)</code></pre>
|
||
|
<pre><code>## estimating dispersions</code></pre>
|
||
|
<pre><code>## fitting model and testing</code></pre>
|
||
|
<pre class="r"><code>res.c <- results(dds.wald, contrast = c("asthma.ics","PersA_no_ICS","H"))
|
||
|
topGene.c <- rownames(res.c)[which.min(res.c$padj)]</code></pre>
|
||
|
<p>Het feature dat het meest verschillend tot expressie komt in dit contrast is ENSG00000119535. Hierna zul je zelf je weg moeten vinden. Meer informatie vind je <a href="http://www.bioconductor.org/help/workflows/rnaseqGene/">hier</a> en <a href="https://www.bioconductor.org/help/course-materials/2015/LearnBioconductorFeb2015/B02.1.1_RNASeqLab.html">hier</a>.</p>
|
||
|
</div>
|
||
|
<div id="session-info" class="section level2">
|
||
|
<h2>session info</h2>
|
||
|
<p>Packages used</p>
|
||
|
<pre class="r"><code>sessionInfo()</code></pre>
|
||
|
<pre><code>## R version 3.6.1 (2019-07-05)
|
||
|
## Platform: x86_64-pc-linux-gnu (64-bit)
|
||
|
## Running under: Ubuntu 18.04.3 LTS
|
||
|
##
|
||
|
## Matrix products: default
|
||
|
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
|
||
|
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
|
||
|
##
|
||
|
## locale:
|
||
|
## [1] LC_CTYPE=nl_NL.UTF-8 LC_NUMERIC=C
|
||
|
## [3] LC_TIME=nl_NL.UTF-8 LC_COLLATE=nl_NL.UTF-8
|
||
|
## [5] LC_MONETARY=nl_NL.UTF-8 LC_MESSAGES=nl_NL.UTF-8
|
||
|
## [7] LC_PAPER=nl_NL.UTF-8 LC_NAME=C
|
||
|
## [9] LC_ADDRESS=C LC_TELEPHONE=C
|
||
|
## [11] LC_MEASUREMENT=nl_NL.UTF-8 LC_IDENTIFICATION=C
|
||
|
##
|
||
|
## attached base packages:
|
||
|
## [1] parallel stats4 stats graphics grDevices utils datasets
|
||
|
## [8] methods base
|
||
|
##
|
||
|
## other attached packages:
|
||
|
## [1] gplots_3.0.1.1 DESeq2_1.24.0
|
||
|
## [3] SummarizedExperiment_1.14.0 DelayedArray_0.10.0
|
||
|
## [5] BiocParallel_1.18.0 matrixStats_0.54.0
|
||
|
## [7] Biobase_2.44.0 GenomicRanges_1.36.0
|
||
|
## [9] GenomeInfoDb_1.20.0 IRanges_2.18.0
|
||
|
## [11] S4Vectors_0.22.0 BiocGenerics_0.30.0
|
||
|
##
|
||
|
## loaded via a namespace (and not attached):
|
||
|
## [1] bit64_0.9-7 splines_3.6.1 gtools_3.8.1
|
||
|
## [4] Formula_1.2-3 assertthat_0.2.1 latticeExtra_0.6-28
|
||
|
## [7] blob_1.1.1 GenomeInfoDbData_1.2.1 yaml_2.2.0
|
||
|
## [10] pillar_1.4.0 RSQLite_2.1.1 backports_1.1.4
|
||
|
## [13] lattice_0.20-38 glue_1.3.1 digest_0.6.18
|
||
|
## [16] RColorBrewer_1.1-2 XVector_0.24.0 checkmate_1.9.3
|
||
|
## [19] colorspace_1.4-1 htmltools_0.3.6 Matrix_1.2-18
|
||
|
## [22] plyr_1.8.4 XML_3.98-1.19 pkgconfig_2.0.2
|
||
|
## [25] genefilter_1.66.0 zlibbioc_1.30.0 purrr_0.3.2
|
||
|
## [28] xtable_1.8-4 scales_1.0.0 gdata_2.18.0
|
||
|
## [31] htmlTable_1.13.1 tibble_2.1.1 annotate_1.62.0
|
||
|
## [34] ggplot2_3.1.1 nnet_7.3-12 lazyeval_0.2.2
|
||
|
## [37] survival_3.1-7 magrittr_1.5 crayon_1.3.4
|
||
|
## [40] memoise_1.1.0 evaluate_0.13 foreign_0.8-72
|
||
|
## [43] tools_3.6.1 data.table_1.12.2 stringr_1.4.0
|
||
|
## [46] locfit_1.5-9.1 munsell_0.5.0 cluster_2.1.0
|
||
|
## [49] AnnotationDbi_1.46.0 compiler_3.6.1 caTools_1.17.1.2
|
||
|
## [52] rlang_0.3.4 grid_3.6.1 RCurl_1.95-4.12
|
||
|
## [55] rstudioapi_0.10 htmlwidgets_1.3 labeling_0.3
|
||
|
## [58] bitops_1.0-6 base64enc_0.1-3 rmarkdown_1.12
|
||
|
## [61] gtable_0.3.0 DBI_1.0.0 R6_2.4.0
|
||
|
## [64] gridExtra_2.3 knitr_1.22 dplyr_0.8.1
|
||
|
## [67] bit_1.1-14 Hmisc_4.2-0 KernSmooth_2.23-16
|
||
|
## [70] stringi_1.4.3 Rcpp_1.0.1 geneplotter_1.62.0
|
||
|
## [73] rpart_4.1-15 acepack_1.4.1 tidyselect_0.2.5
|
||
|
## [76] xfun_0.7</code></pre>
|
||
|
</div>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
</div>
|
||
|
|
||
|
<script>
|
||
|
|
||
|
// add bootstrap table styles to pandoc tables
|
||
|
function bootstrapStylePandocTables() {
|
||
|
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
|
||
|
}
|
||
|
$(document).ready(function () {
|
||
|
bootstrapStylePandocTables();
|
||
|
});
|
||
|
|
||
|
|
||
|
</script>
|
||
|
|
||
|
<!-- dynamically load mathjax for compatibility with self-contained -->
|
||
|
<script>
|
||
|
(function () {
|
||
|
var script = document.createElement("script");
|
||
|
script.type = "text/javascript";
|
||
|
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
|
||
|
document.getElementsByTagName("head")[0].appendChild(script);
|
||
|
})();
|
||
|
</script>
|
||
|
|
||
|
</body>
|
||
|
</html>
|