fastqc: simple comment. trimming: reverted back. overall qc: simplified the scripts and made sure to add instructions.
This commit is contained in:
@@ -1,16 +1,28 @@
|
||||
# Gender QC
|
||||
# Normalized with limma::voom
|
||||
library(GSVA)
|
||||
library(limma)
|
||||
library(edgeR)
|
||||
library(tidyverse)
|
||||
|
||||
source("__ - Preloader.R", verbose=T)
|
||||
|
||||
# expression.data. Has columns:
|
||||
# - Gene (gene identifier)
|
||||
# - [Sample identifiers]
|
||||
expression.data <- "mrna_counts_table.csv"
|
||||
# master.Table. Has columns:
|
||||
# - GenomeScan_ID
|
||||
# - gender, levels = c("male", "female")
|
||||
# - age
|
||||
# - factor(smoking.status, levels = c("Ex-smoker", "Current smoker"))
|
||||
master.Table <- "patient_table.csv"
|
||||
# results.dir. The directory of where to put the resulting tables (and later your plots.)
|
||||
results.dir <- "results"
|
||||
|
||||
|
||||
# The analysis
|
||||
norm.expr.data <- expression.data %>%
|
||||
tibble::column_to_rownames("Gene")
|
||||
norm.expr.data <- norm.expr.data[rowSums(norm.expr.data) >= 10,] %>%
|
||||
limma::voom() %>%
|
||||
as.matrix()
|
||||
|
||||
# We first do a differential expression analysis on gender using EdgeR.
|
||||
# Afterwards you should plot these results.
|
||||
x.genes <- gene.data %>%
|
||||
dplyr::filter(chromosome_name == "X") %>%
|
||||
dplyr::pull(ensembl_gene_id)
|
||||
@@ -87,248 +99,12 @@ gender.qc.genes.to.plot <- gender.qc.results %>%
|
||||
chromosome_name %in% c("X", "Y") &
|
||||
FDR < 0.05 &
|
||||
dplyr::row_number() <= 5
|
||||
) |
|
||||
hgnc_symbol %in% c(
|
||||
"XIST",
|
||||
"TSIX",
|
||||
"KDM6A",
|
||||
"ZFX",
|
||||
"KDM5C",
|
||||
"ZFY-AS1",
|
||||
"ARSDP1",
|
||||
"GYG2P1",
|
||||
"RBMY2JP",
|
||||
"ARSLP1"
|
||||
)
|
||||
)
|
||||
|
||||
gender.qc.data <- as.data.frame(norm.expr.data) %>%
|
||||
rownames_to_column("ensembl.id") %>%
|
||||
tidyr::gather(
|
||||
key = "rna.seq.sample.id",
|
||||
value = "expr.value",
|
||||
-ensembl.id
|
||||
) %>%
|
||||
dplyr::filter(
|
||||
ensembl.id %in% gender.qc.genes.to.plot$ensembl.id
|
||||
) %>%
|
||||
dplyr::left_join(
|
||||
y = gender.qc.patients,
|
||||
by = c("rna.seq.sample.id" = "GenomeScan_ID")
|
||||
) %>%
|
||||
#dplyr::filter(
|
||||
# !is.na(gender)
|
||||
#) %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.gender.plot, "plot.data.voom.csv")
|
||||
)
|
||||
|
||||
for (chr in gender.qc.genes.to.plot$chromosome_name) {
|
||||
current.gender.qc.genes.to.plot <- gender.qc.genes.to.plot %>%
|
||||
dplyr::filter(chromosome_name == chr)
|
||||
chromosome_name <- chr
|
||||
i <- 0
|
||||
for (current.ensembl.id in current.gender.qc.genes.to.plot$ensembl.id) {
|
||||
i <- i + 1
|
||||
|
||||
hgnc_symbol <- gene.data %>%
|
||||
dplyr::filter(
|
||||
ensembl_gene_id == current.ensembl.id
|
||||
) %>%
|
||||
dplyr::pull(hgnc_symbol)
|
||||
|
||||
# calculate outliers, kinda
|
||||
plot.data <- gender.qc.data %>%
|
||||
dplyr::filter(
|
||||
ensembl.id == current.ensembl.id
|
||||
) %>%
|
||||
dplyr::mutate(
|
||||
gender = dplyr::case_when(
|
||||
is.na(gender) | (stringr::str_trim(gender) == "") ~ "other",
|
||||
TRUE ~ gender
|
||||
)
|
||||
)
|
||||
|
||||
if (nrow(plot.data) <= 0) {
|
||||
next
|
||||
}
|
||||
|
||||
outliers <- boxplot(
|
||||
formula = expr.value ~ gender,
|
||||
data = plot.data,
|
||||
plot = FALSE
|
||||
)$out
|
||||
|
||||
result.to.annotate <- plot.data %>%
|
||||
dplyr::filter(
|
||||
expr.value %in% outliers
|
||||
)
|
||||
|
||||
# Visual: plot range (for t-test p-value)
|
||||
plot.y.range <- c(
|
||||
"min" = as.integer(min(plot.data$expr.value) - 1) ,
|
||||
"max" = as.integer(max(plot.data$expr.value) + 1)
|
||||
)
|
||||
plot.margin <- ((plot.y.range["max"] + (plot.y.range["min"] * -1)) * 0.05)
|
||||
plot.y.range["min"] <- plot.y.range["min"] - plot.margin
|
||||
plot.y.range["max"] <- plot.y.range["max"] + plot.margin
|
||||
|
||||
# Plot the damn thing as if it is Graphpad Prism
|
||||
stat.table <- rstatix::t_test(plot.data, expr.value ~ gender)
|
||||
plt <- plot.data %>%
|
||||
ggplot2::ggplot(
|
||||
mapping = ggplot2::aes(
|
||||
x = gender,
|
||||
y = expr.value
|
||||
)
|
||||
) +
|
||||
ggplot2::geom_jitter(
|
||||
mapping = ggplot2::aes(
|
||||
colour = gender,
|
||||
shape = gender
|
||||
),
|
||||
width = 0.1
|
||||
) +
|
||||
ggrepel::geom_text_repel(
|
||||
data = result.to.annotate,
|
||||
mapping = ggplot2::aes(
|
||||
label = sample.id
|
||||
),
|
||||
size = 2,
|
||||
box.padding = unit(0.35, "lines"),
|
||||
point.padding = unit(0.3, "lines")
|
||||
) +
|
||||
ggplot2::stat_summary(
|
||||
fun = "mean",
|
||||
geom = "crossbar",
|
||||
width = 0.3,
|
||||
size = 0.3
|
||||
) +
|
||||
ggplot2::scale_y_continuous(
|
||||
limits = plot.y.range,
|
||||
guide = "prism_offset"
|
||||
) +
|
||||
#ggprism::add_pvalue(
|
||||
# stat.table,
|
||||
# y.position = plot.y.range["max"]
|
||||
#) +
|
||||
ggprism::theme_prism() +
|
||||
ggprism::scale_colour_prism() +
|
||||
ggprism::scale_shape_prism() +
|
||||
ggplot2::theme(
|
||||
legend.position = "none"
|
||||
) +
|
||||
ggplot2::labs(
|
||||
subtitle = paste0("Gender Check: ", hgnc_symbol, " (chr. ", chromosome_name, ")"),
|
||||
x = "Gender",
|
||||
y = "Normalised Expression Values"
|
||||
)
|
||||
|
||||
ggplot2::ggsave(
|
||||
filename = file.path(results.dir.gender.plot, paste0(chromosome_name, ".", i, ".", hgnc_symbol, ".png")),
|
||||
plot = plt,
|
||||
width = 12.5,
|
||||
height = 12.5,
|
||||
unit = "cm"
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
# Let's try a GSVA
|
||||
gsva.groups <- list(
|
||||
X = gender.qc.genes.to.plot %>%
|
||||
dplyr::filter(chromosome_name == "X") %>%
|
||||
dplyr::pull(ensembl.id),
|
||||
Y = gender.qc.genes.to.plot %>%
|
||||
dplyr::filter(chromosome_name == "Y") %>%
|
||||
dplyr::pull(ensembl.id)
|
||||
)
|
||||
|
||||
gsva_res = GSVA::gsva(
|
||||
norm.expr.data,
|
||||
gsva.groups,
|
||||
mx.diff = TRUE,
|
||||
verbose = FALSE,
|
||||
parallel.sz = 1
|
||||
)
|
||||
|
||||
|
||||
gender.qc.gsva.data <- as.data.frame(gsva_res) %>%
|
||||
rownames_to_column("gsva.group") %>%
|
||||
tidyr::gather(
|
||||
key = "rna.seq.sample.id",
|
||||
value = "gsva.value",
|
||||
-gsva.group
|
||||
) %>%
|
||||
dplyr::left_join(
|
||||
y = gender.qc.patients %>%
|
||||
dplyr::select(
|
||||
GenomeScan_ID,
|
||||
sample.id,
|
||||
gender
|
||||
),
|
||||
by = c("rna.seq.sample.id" = "GenomeScan_ID")
|
||||
) %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.gender.plot, "plot.data.gsva.csv")
|
||||
)
|
||||
|
||||
|
||||
for (c.gender in unique(gender.qc.gsva.data$gender)) {
|
||||
if (is.na(c.gender)) {
|
||||
next
|
||||
}
|
||||
|
||||
c.plot.data <- gender.qc.gsva.data %>%
|
||||
dplyr::filter(
|
||||
gender == c.gender
|
||||
)
|
||||
|
||||
outliers <- boxplot(
|
||||
formula = gsva.value ~ gsva.group,
|
||||
data = c.plot.data,
|
||||
plot = FALSE
|
||||
)$out
|
||||
|
||||
result.to.annotate <- c.plot.data %>%
|
||||
dplyr::filter(
|
||||
gsva.value %in% outliers
|
||||
)
|
||||
|
||||
plt <- c.plot.data %>%
|
||||
ggplot2::ggplot(
|
||||
mapping = ggplot2::aes(
|
||||
x = gsva.group,
|
||||
y = gsva.value
|
||||
)
|
||||
) +
|
||||
ggplot2::geom_boxplot() +
|
||||
ggrepel::geom_text_repel(
|
||||
data = result.to.annotate,
|
||||
mapping = ggplot2::aes(
|
||||
label = sample.id
|
||||
),
|
||||
size = 2,
|
||||
box.padding = unit(0.35, "lines"),
|
||||
point.padding = unit(0.3, "lines")
|
||||
) +
|
||||
ggprism::theme_prism() +
|
||||
ggprism::scale_colour_prism() +
|
||||
ggprism::scale_shape_prism() +
|
||||
ggplot2::theme(
|
||||
legend.position = "none"
|
||||
) +
|
||||
ggplot2::labs(
|
||||
subtitle = paste0("", toupper(c.gender)),
|
||||
x = "Chromosome",
|
||||
y = "GSVA Values"
|
||||
)
|
||||
|
||||
ggplot2::ggsave(
|
||||
filename = file.path(results.dir.gender.plot, paste0("gsva.", c.gender, ".png")),
|
||||
plot = plt,
|
||||
width = 12.5,
|
||||
height = 12.5,
|
||||
unit = "cm"
|
||||
)
|
||||
}
|
||||
# Next thing to do:
|
||||
# - Plot the normalized expressino values for the genes in gender.qc.genes.to.plot in a boxplot, split and colored by gender.
|
||||
# - (Optional) Do a GSVA with as genesets the genes found in gender.qc.genes.to.plot. Plot the boxplots as per the previous point.
|
||||
# - (Optional) Plot the number of Y-chromosome reads devided by the number of X chromosome reads in a boxplot as per the first point.
|
||||
# - (Optional) Plot the number of Y-chromosome SNPs devided by the number of X chromosome SNPs in a boxplot as per the first point.
|
||||
|
Reference in New Issue
Block a user