Comments to umi deduplication script #8
|
@ -0,0 +1,4 @@
|
|||
|
||||
.DS_Store
|
||||
*.nosync
|
||||
*.RData
|
|
@ -0,0 +1,12 @@
|
|||
#!/bin/bash
|
||||
R1="sample1_R1.fastq.gz"
|
||||
R2="sample1_R2.fastq.gz"
|
||||
|
||||
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
|
||||
FASTQC_OUT="${PROJECT_DIRECTORY}/step1/"
|
||||
mkdir -p "${FASTQC_OUT}"
|
||||
|
||||
# Run FastQC on paired-end data.
|
||||
fastqc \
|
||||
-o "${FASTQC_OUT}" \
|
||||
"${R1}" "${R2}"
|
|
@ -0,0 +1,54 @@
|
|||
#!/bin/bash
|
||||
#
|
||||
# Reference: http://www.usadellab.org/cms/?page=trimmomatic
|
||||
|
||||
|
||||
module load Trimmomatic
|
||||
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
|
||||
FASTQ_OUT="${PROJECT_DIRECTORY}/step2/"
|
||||
mkdir -p "${FASTQ_OUT}"
|
||||
|
||||
|
||||
# Adapters can be found at
|
||||
# https://github.com/timflutre/trimmomatic/tree/master/adapters
|
||||
# But should be verified with FastQC, or in another way.
|
||||
|
||||
|
||||
# Trimmomatic example Paired end data.
|
||||
#
|
||||
# Flags:
|
||||
# - ILLUMINACLIP: Cut adapter and other illumina-specific sequences from the
|
||||
# read.
|
||||
# - SLIDINGWINDOW: Perform a sliding window trimming, cutting once the average
|
||||
# quality within the window falls below a threshold.
|
||||
# - LEADING: Cut bases off the start of a read, if below a threshold quality.
|
||||
# - TRAILING: Cut bases off the end of a read, if below a threshold quality.
|
||||
# - HEADCROP: Cut the specified number of bases from the start of the read.
|
||||
# - MINLEN: Drop the read if it is below a specified length.
|
||||
java -jar $EBROOTTRIMMOMATIC/trimmomatic.jar PE \
|
||||
-phred33 \
|
||||
sample1_R1.fastq.gz \
|
||||
sample1_R2.fastq.gz \
|
||||
"${FASTQ_OUT}/sample1_R1_paired.fastq.gz" \
|
||||
"${FASTQ_OUT}/sample1_R1_unpaired.fastq.gz" \
|
||||
"${FASTQ_OUT}/sample1_R2_paired.fastq.gz" \
|
||||
"${FASTQ_OUT}/sample1_R2_unpaired.fastq.gz" \
|
||||
ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 \
|
||||
LEADING:3 \
|
||||
TRAILING:3 \
|
||||
SLIDINGWINDOW:4:25 \
|
||||
HEADCROP:8 \
|
||||
MINLEN:50
|
||||
|
||||
|
||||
# Example single end data.
|
||||
java -jar $EBROOTTRIMMOMATIC/trimmomatic.jar SE \
|
||||
-phred33 \
|
||||
sample1.fastq.gz \
|
||||
output.fastq.gz \
|
||||
ILLUMINACLIP:TruSeq3-SE:2:30:10 \
|
||||
LEADING:3 \
|
||||
TRAILING:3 \
|
||||
SLIDINGWINDOW:4:15 \
|
||||
HEADCROP:8 \
|
||||
MINLEN:50
|
|
@ -0,0 +1,54 @@
|
|||
#!/bin/bash
|
||||
#
|
||||
# Align reads against reference genome.
|
||||
|
||||
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
|
||||
# Store genome index in this location:.
|
||||
GENOME_INDEX="${PROJECT_DIRECTORY}/step3/genome_index"
|
||||
mkdir -p "${GENOME_INDEX}"
|
||||
# Store the generated `Aligned.sortedByCoord.out.bam` in this dir.
|
||||
ALIGNMENT_OUTPUT="${PROJECT_DIRECTORY}/step3/alignment/"
|
||||
mkdir -p "${ALIGNMENT_OUTPUT}"
|
||||
|
||||
# 1) Generate genome index.
|
||||
#
|
||||
# N.B.:
|
||||
# - We're assuming a read size of 100 bp (--sjdbOverhang 100). An alternative
|
||||
# cut-off is 150, for low-input methods. In general, refer back to the
|
||||
# previous quality control steps if you are unsure about the size. In case of
|
||||
# reads of varying length, the ideal value is max(ReadLength)-1.
|
||||
# - We're using gzip compressed reference data (--readFilesCommand zcat), i.e.,
|
||||
# .gtf.gz and fa.gz. If not, you can remove the `zcat` flag.
|
||||
|
||||
# Storage location reference data (in this case on Gearshift).
|
||||
REFERENCE_DATA="/groups/umcg-griac/prm03/rawdata/reference/genome"
|
||||
GTF_FILE="${REFERENCE_DATA}/Homo_sapiens.GRCh38.100.gtf.gz"
|
||||
FASTA_FILE="${REFERENCE_DATA}/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz"
|
||||
|
||||
STAR \
|
||||
--runThreadN 8 \
|
||||
--runMode genomeGenerate \
|
||||
--readFilesCommand zcat \
|
||||
--sjdbOverhang 100 \
|
||||
--genomeFastaFiles ${FASTA_FILE} \
|
||||
--sjdbGTFfile ${GTF_FILE} \
|
||||
--genomeDir ${GENOME_INDEX}
|
||||
|
||||
|
||||
# 2) Do the actual alignment.
|
||||
#
|
||||
# N.B.:
|
||||
# - We are assuming paired-end, gzip compressed (--readFilesCommand zcat) FastQ
|
||||
# files.
|
||||
|
||||
# The compressed, paired-end, FastQ's after trimming (step 2).
|
||||
R1="${PROJECT_DIRECTORY}/step2/sample1_R1_paired.fastq.gz"
|
||||
R2="${PROJECT_DIRECTORY}/step2/sample1_R2_paired.fastq.gz"
|
||||
|
||||
STAR \
|
||||
--runThreadN 8 \
|
||||
--readFilesCommand zcat \
|
||||
--readFilesIn "${R1}" "${R2}" \
|
||||
--outSAMtype BAM SortedByCoordinate \
|
||||
--genomeDir ${GENOME_INDEX} \
|
||||
--outFileNamePrefix "${ALIGNMENT_OUTPUT}"
|
|
@ -0,0 +1,5 @@
|
|||
#!/bin/bash
|
||||
module load multiqc
|
||||
|
||||
PROJECT_DIRECTORY="/groups/umcg-griac/tmp01/rawdata/$(whoami)/rnaseq"
|
||||
multiqc "${PROJECT_DIRECTORY}"
|
|
@ -0,0 +1,81 @@
|
|||
# Principle Component Analysis
|
||||
# Normalized with limma::voom
|
||||
library(limma)
|
||||
library(tidyverse)
|
||||
|
||||
|
||||
# expression.data. Has columns:
|
||||
# - Gene (gene identifier)
|
||||
# - [Sample identifiers]
|
||||
expression.data <- "mrna_counts_table.csv"
|
||||
# results.dir. The directory of where to put the resulting tables (and later your plots.)
|
||||
results.dir <- "results"
|
||||
|
||||
|
||||
# PCA variables
|
||||
do.center = TRUE
|
||||
do.scale = FALSE
|
||||
|
||||
|
||||
# The analysis
|
||||
# We use prcomp to calculate the PCAs. Afterwards you should plot the results.
|
||||
norm.expr.data <- expression.data %>%
|
||||
tibble::column_to_rownames("Gene")
|
||||
norm.expr.data <- norm.expr.data[rowSums(norm.expr.data) >= 10,] %>%
|
||||
limma::voom() %>%
|
||||
as.matrix()
|
||||
|
||||
# Principle Component analysis
|
||||
results.dir.pca <- file.path(results.dir, "principle.components")
|
||||
dir.create(results.dir.pca, recursive=TRUE)
|
||||
|
||||
norm.expr.data.pcs <- norm.expr.data %>%
|
||||
t() %>%
|
||||
stats::prcomp(
|
||||
center = do.center,
|
||||
scale. = do.scale
|
||||
)
|
||||
|
||||
# Write summary of PCAs to files
|
||||
pcs.summary <- summary(norm.expr.data.pcs)
|
||||
pcs.summary$importance %>%
|
||||
t() %>%
|
||||
as.data.frame() %>%
|
||||
tibble::rownames_to_column("PC.name") %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.pca, "importance.csv")
|
||||
)
|
||||
|
||||
pcs.summary$x %>%
|
||||
t() %>%
|
||||
as.data.frame() %>%
|
||||
tibble::rownames_to_column("ensembl.id") %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.pca, "values.csv")
|
||||
)
|
||||
|
||||
pcs.summary$rotation %>%
|
||||
t() %>%
|
||||
as.data.frame() %>%
|
||||
tibble::rownames_to_column("sample.id") %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.pca, "rotation.csv")
|
||||
)
|
||||
|
||||
data.frame(
|
||||
rownames = names(pcs.summary$center),
|
||||
center = pcs.summary$center,
|
||||
scale = pcs.summary$scale
|
||||
) %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.pca, "rest.csv")
|
||||
)
|
||||
|
||||
# Not saved: pcs.summary$sdev,
|
||||
|
||||
|
||||
# Next thing to do:
|
||||
# - (Optional) scree plot - to determine the optimal cutoff for PCA inclusion based on explaination of variance
|
||||
# - (Optional) eigencorplot - to correlate PCAs to clinical variables so that you know which PCA to include for which analysis
|
||||
# - (Optional) pairsplot - plot multiple PCAs against each other in a single figure
|
||||
# - Plot the first couple of PCAs against each other
|
|
@ -0,0 +1,112 @@
|
|||
# Gender QC
|
||||
# Normalized with limma::voom
|
||||
library(GSVA)
|
||||
library(limma)
|
||||
library(edgeR)
|
||||
library(tidyverse)
|
||||
|
||||
|
||||
# expression.data. Has columns:
|
||||
# - Gene (gene identifier)
|
||||
# - [Sample identifiers]
|
||||
expression.data <- "mrna_counts_table.csv"
|
||||
# master.Table. Has columns:
|
||||
# - GenomeScan_ID
|
||||
# - gender, levels = c("male", "female")
|
||||
# - age
|
||||
# - factor(smoking.status, levels = c("Ex-smoker", "Current smoker"))
|
||||
master.Table <- "patient_table.csv"
|
||||
# results.dir. The directory of where to put the resulting tables (and later your plots.)
|
||||
results.dir <- "results"
|
||||
|
||||
|
||||
# The analysis
|
||||
# We first do a differential expression analysis on gender using EdgeR.
|
||||
# Afterwards you should plot these results.
|
||||
x.genes <- gene.data %>%
|
||||
dplyr::filter(chromosome_name == "X") %>%
|
||||
dplyr::pull(ensembl_gene_id)
|
||||
|
||||
y.genes <- gene.data %>%
|
||||
dplyr::filter(chromosome_name == "Y") %>%
|
||||
dplyr::pull(ensembl_gene_id)
|
||||
|
||||
# Gender QC
|
||||
results.dir.gender <- file.path(results.dir, "gender.check")
|
||||
dir.create(results.dir.gender, recursive=TRUE)
|
||||
|
||||
# Differential Expression on Gender
|
||||
gender.qc.patients <- master.Table %>%
|
||||
dplyr::filter(
|
||||
!is.na(GenomeScan_ID)
|
||||
) %>%
|
||||
dplyr::mutate(
|
||||
gender = factor(gender, levels = c("male", "female")),
|
||||
age = as.numeric(age),
|
||||
smoking.status = factor(smoking.status, levels = c("Ex-smoker", "Current smoker"))
|
||||
) %>%
|
||||
dplyr::filter(
|
||||
!is.na(gender)
|
||||
)
|
||||
gender.qc.sample.order <- gender.qc.patients %>%
|
||||
dplyr::pull(GenomeScan_ID)
|
||||
|
||||
gender.qc.expression.data <- expression.data %>%
|
||||
tibble::column_to_rownames("Gene") %>%
|
||||
select.columns.in.order(gender.qc.sample.order) %>%
|
||||
as.matrix()
|
||||
|
||||
design <- model.matrix( ~0 + gender, data = gender.qc.patients)
|
||||
|
||||
DGEL <- edgeR::DGEList(gender.qc.expression.data)
|
||||
keep <- edgeR::filterByExpr(DGEL)
|
||||
keep[names(keep) %in% x.genes] <- TRUE
|
||||
keep[names(keep) %in% y.genes] <- TRUE
|
||||
DGEL <- DGEL[keep, , keep.lib.sizes=FALSE]
|
||||
DGEL <- edgeR::calcNormFactors(DGEL, method = "TMM")
|
||||
|
||||
DGEL <- edgeR::estimateDisp(DGEL, design)
|
||||
fit <- edgeR::glmQLFit(DGEL,design)
|
||||
|
||||
contrasts <- limma::makeContrasts(
|
||||
gender = gendermale - genderfemale,
|
||||
levels = design
|
||||
)
|
||||
qlf <- edgeR::glmQLFTest(fit, contrast = contrasts[,"gender"])
|
||||
|
||||
gender.qc.results <- edgeR::topTags(
|
||||
qlf,
|
||||
n=nrow(DGEL)
|
||||
)$table %>%
|
||||
tibble::rownames_to_column("ensembl.id") %>%
|
||||
dplyr::left_join(
|
||||
y = gene.data,
|
||||
by = c("ensembl.id" = "ensembl_gene_id")
|
||||
) %>%
|
||||
readr::write_csv(
|
||||
file.path(results.dir.gender, "differential.expression.on.gender.csv")
|
||||
)
|
||||
|
||||
# Plotting of gender expression
|
||||
results.dir.gender.plot <- file.path(results.dir.gender, "img")
|
||||
dir.create(results.dir.gender.plot, recursive=TRUE)
|
||||
|
||||
gender.qc.genes.to.plot <- gender.qc.results %>%
|
||||
dplyr::arrange(PValue) %>%
|
||||
dplyr::group_by(chromosome_name) %>%
|
||||
dplyr::filter(
|
||||
(
|
||||
chromosome_name %in% c("X", "Y") &
|
||||
FDR < 0.05 &
|
||||
dplyr::row_number() <= 5
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Next thing to do:
|
||||
# - Plot the normalized expressino values for the genes in gender.qc.genes.to.plot in a boxplot, split and colored by gender.
|
||||
# - (Optional) Do a GSVA with as genesets the genes found in gender.qc.genes.to.plot. Plot the boxplots as per the previous point.
|
||||
# - (Optional) Plot the number of Y-chromosome reads devided by the number of X chromosome reads in a boxplot as per the first point.
|
||||
# x=$(samtools view -q 20 -f 2 $bam_file X | wc -l)
|
||||
# y=$(samtools view -q 20 -f 2 $bam_file Y | wc -l)
|
||||
# - (Optional) Plot the number of Y-chromosome SNPs devided by the number of X chromosome SNPs in a boxplot as per the first point.
|
|
@ -0,0 +1,39 @@
|
|||
# Total counts per sample
|
||||
# Normalized with limma::voom
|
||||
library(limma)
|
||||
library(tidyverse)
|
||||
|
||||
|
||||
# expression.data. Has columns:
|
||||
# - Gene (gene identifier)
|
||||
# - [Sample identifiers]
|
||||
expression.data <- "mrna_counts_table.csv"
|
||||
# master.Table. Has columns:
|
||||
# - GenomeScan_ID
|
||||
# - gender, levels = c("male", "female")
|
||||
# - age
|
||||
# - factor(smoking.status, levels = c("Ex-smoker", "Current smoker"))
|
||||
master.Table <- "patient_table.csv"
|
||||
# results.dir. The directory of where to put the resulting tables (and later your plots.)
|
||||
results.dir <- "results"
|
||||
|
||||
|
||||
# The analysis
|
||||
# We calculate the number of mapped reads per sample.
|
||||
total.count.per.sample <- expression.data %>%
|
||||
tibble::column_to_rownames("Gene") %>%
|
||||
colSums()
|
||||
|
||||
data.frame(
|
||||
sample = names(total.count.per.sample),
|
||||
counts = as.numeric(total.count.per.sample)
|
||||
) %>%
|
||||
readr::write_csv(file.path(results.dir, "total.counts.per.sample.csv"))
|
||||
|
||||
|
||||
# Next thing to do:
|
||||
# - Check the number of reads per sample in total.counts.per.sample.csv
|
||||
# - Plot the reads distribution (all reads) per sample in a boxplot.
|
||||
# - (Optional) Calculate the number of unmapped, multimapped, unique mapped to
|
||||
# feature and unique mapped to no feature and plot these in a stacked bar graph.
|
||||
|
Loading…
Reference in New Issue