radar2/server.R

1078 lines
38 KiB
R

server <- function(input, output, session) {
# define data selection ---------------------------------------------------
data_select <- reactive({if (input$box2.6_first != 365) {
radar_data %>%
filter(specialty_shiny %in% input$specialtyInput & department %in% input$departmentInput) %>%
filter_first_isolate(col_patient_id = "patientid", episode_days = input$box2.6_first) %>%
mutate(mo = as.mo(mo, Becker = TRUE))
} else {
radar_data_first %>%
filter(specialty_shiny %in% input$specialtyInput & department %in% input$departmentInput)
}
})
# update specialties & departments --------------------------------------------------------------
observe({
x <- input$allInput
if (x == TRUE) {
x <- sort(unique(radar_data$specialty_shiny))
}
else {
x <- character(0)
}
updateCheckboxGroupInput(
session,
"specialtyInput",
label = NULL,
choices = sort(unique(radar_data$specialty_shiny)),
selected = x
)
})
observe({
x <- input$specialtyInput
if (!is.null(x)) {
update_departments <-
radar_data %>% filter(specialty_shiny %in% input$specialtyInput)
x <- sort(unique(update_departments$department))
}
else {
x <- character(0)
}
updateCheckboxGroupInput(
session,
inputId = "departmentInput",
label = NULL,
choices = sort(unique(radar_data$department)),
selected = x
)
})
# sidebar hover -----------------------------------------------------------
onevent("mouseenter", "sidebarCollapsed", shinyjs::removeCssClass(selector = "body", class = "sidebar-collapse"))
onevent("mouseleave", "sidebarCollapsed", shinyjs::addCssClass(selector = "body", class = "sidebar-collapse"))
# BOX top left -----------------------------------------------------------
output$box2 <- renderUI({
div(
style = "position: relative",
tabBox(
id = "box2",
width = NULL,
height = 500,
tabPanel(
title = "Positive & negative cultures",
div(
style = "position: absolute; left: 0.5em; bottom: 0.5em;",
dropdown(
radioGroupButtons(
inputId = "box2.1_group",
label = "Select group",
choiceNames = c("All", "Year", "Gender", "Department", "Specialty", "Specialty code", "ICU status", "Clinical status", "Outward status"),
choiceValues = c("group_all", "year", "gender", "department", "specialty", "specialism", "is_icu", "is_clinical", "is_outward"),
selected = "group_all",
direction = "vertical",
),
size = "xs",
icon = icon("gear", class = "opt"),
up = TRUE
)
),
div(
style = "position: absolute; right: 3.5em; bottom: 0.5em;",
dropdown(
downloadButton(outputId = "down_box_pos_neg", label = "Download plot"),
size = "xs",
icon = icon("download", class = "opt"),
up = TRUE
)
),
withSpinner(
girafeOutput("pos_neg_plot", height = 400),
type = 4,
color = "#d33724",
size = 0.7
)
),tabPanel(
title = "Isolates (and pathogens) detected",
div(
style = "position: absolute; left: 0.5em; bottom: 0.5em;",
dropdown(
radioGroupButtons(
inputId = "box2.3_group",
label = "Select group",
choiceNames = c("All", "Year", "Gender", "Department", "Specialty", "Specialty code", "ICU status", "Clinical status", "Outward status"),
choiceValues = c("group_all", "year", "gender", "department", "specialty", "specialism", "is_icu", "is_clinical", "is_outward"),
selected = "group_all",
direction = "vertical"
),
size = "xs",
icon = icon("gear", class = "opt"),
up = TRUE
)
),
div(
style = "position: absolute; left: 4.6em; bottom: 0.5em;",
dropdown(
sliderTextInput(
inputId = "box2.4_top",
label = "Use slider to select by count",
choices = seq(0, n_distinct(radar_data$mo), 10),
selected = c(0, 10)
),
size = "xs",
label = "Select top ...",
up = TRUE)
),
div(
style = "position: absolute; left: 12em; bottom: 0.5em;",
dropdown(
radioGroupButtons(
inputId = "box2.3_pathogen",
label = "Select pathogen group",
choiceNames = c("all", "definite", "probable", "improbable"),
choiceValues = c(0, 1, 2, 3),
selected = 0
),
size = "xs",
label = "Pathogens",
up = TRUE
)),
div(
style = "position: absolute; left: 18.7em; bottom: 0.5em;",
dropdown(
selectInput(
inputId = "box2.5_search",
label = "Search and select isolates",
choices = mo_fullname(unique(radar_data$mo)[which(!is.na(unique(radar_data$mo)))]),
multiple = TRUE
),
size = "xs",
label = "Search isolates",
up = TRUE
)),
div(
style = "position: absolute; left: 27em; bottom: 0.5em;",
dropdown(
sliderTextInput(
inputId = "box2.6_first",
label = "Select range in days (use standard = 365 if not specially requested otherwise)",
choices = c(15, 30, 60, 90, 365),
selected = 365
),
size = "xs",
label = "Define first isolate guidelines",
up = TRUE
)),
div(
style = "position: absolute; right: 3.5em; bottom: 0.5em;",
dropdown(
downloadButton(outputId = "down_box_patho", label = "Download plot"),
size = "xs",
icon = icon("download", class = "opt"),
up = TRUE
)
),
withSpinner(
girafeOutput("patho_plot", height = 400),
type = 4,
color = "#d33724",
size = 0.7
)
),
tabPanel(
title = "First isolates per episode",
div(
style = "position: absolute; left: 0.5em; bottom: 0.5em;",
dropdown(
radioGroupButtons(
inputId = "box2.2_group",
label = "Select group",
choiceNames = c("All", "Year", "Gender", "Department", "Department type", "Specialty", "ICU status", "Clinical status", "Outward status"),
choiceValues = c("group_all", "year", "gender", "department", "type_dept", "specialism", "is_icu", "is_clinical", "is_outward"),
selected = "group_all",
direction = "vertical"
),
size = "xs",
icon = icon("gear", class = "opt"),
up = TRUE
)
),
withSpinner(
plotOutput("test_plot", height = 400),
type = 4,
color = "#d33724",
size = 0.7
)
),
div(
style = "position:absolute;right:0.5em;bottom: 0.5em;",
conditionalPanel(
"input.box2 == 'Positive & negative cultures'",
actionBttn(
inputId = "pos_neg_plus",
icon = icon("search-plus", class = "opt"),
style = "fill",
color = "danger",
size = "xs"
)
)
),
div(
style = "position:absolute;right:0.5em;bottom: 0.5em;",
conditionalPanel(
"input.box2 == 'First isolates per episode'",
actionBttn(
inputId = "test_plus",
icon = icon("search-plus", class = "opt"),
style = "fill",
color = "danger",
size = "xs"
)
)
),
div(
style = "position:absolute;right:0.5em;bottom: 0.5em;",
conditionalPanel(
"input.box2 == 'Isolates (and pathogens) detected'",
actionBttn(
inputId = "patho_plus",
icon = icon("search-plus", class = "opt"),
style = "fill",
color = "danger",
size = "xs"
)
)
)
)
)
})
observeEvent((input$test_plus), {
showModal(modalDialog(
renderPlot({
test_plot() + theme(
text = element_text(family = "Arial"),
axis.title = element_text(size = 20),
text = element_text(size = 20),
plot.title = element_text(size = 26)
)
}, height = 600),
easyClose = TRUE,
size = "l",
footer = NULL
))
})
observeEvent((input$pos_neg_plus), {
showModal(modalDialog(
renderPlot({
pos_neg_plot() + theme(
axis.title = element_text(size = 20),
text = element_text(size = 20),
plot.title = element_text(size = 26)
)
}, height = 600),
easyClose = TRUE,
size = "l",
footer = NULL
))
})
observeEvent((input$patho_plus), {
showModal(modalDialog(
renderPlot({
patho_plot() + theme(
text = element_text(family = "Arial"),
axis.title = element_text(size = 20),
plot.title = element_text(size = 26)
)
}, height = 600),
easyClose = TRUE,
size = "l",
footer = NULL
))
})
# positive negative plot --------------------------------------------------
pos_neg_plot <- reactive({
pos_neg_plot <- radar_data %>%
filter(specialty_shiny %in% input$specialtyInput & department %in% input$departmentInput) %>%
group_by_at(input$box2.1_group) %>%
summarise(patients = n_distinct(patientid),
total = n_distinct(sampleid),
positive = n_distinct(sampleid[!is.na(mo)]),
negative = total - positive) %>%
pivot_longer(cols = c("total", "positive", "negative")) %>%
mutate(name = factor(name, levels = c("total", "negative", "positive")))
pos_neg_plot %>%
ggplot(aes(name, value, fill = name, tooltip = value)) +
geom_col_interactive(colour = "black") +
scale_fill_manual(values = c("white", "lightgrey", "darkred")) +
labs(x = "", y = "Count", fill = "", title = "Number of positive & negative blood culture tests") +
theme_minimal() +
theme(text = element_text(family = "Arial"),
legend.title = element_blank(),
legend.text = element_text(margin = margin(l = 5)),
axis.title.y = element_blank(),
axis.text = element_text(size = 12),
plot.title = element_text(face = "bold", size = 14),
plot.caption = element_text(colour = "grey")) +
{if (input$box2.1_group != "group_all") {
facet_wrap(input$box2.1_group)
}} +
NULL
})
output$pos_neg_plot <- renderGirafe({
ggiraph(ggobj = pos_neg_plot(),
height_svg = 6,
width_svg = 10,
selection_type = "none")
})
output$down_box_pos_neg <- download_box("positive_negative_plot", pos_neg_plot())
# pathogen distribution plot ---------------------------------------------------
patho_plot <- reactive({
mo_search <- c("none", as.mo(input$box2.5_search))
top_10 <- data_select() %>%
filter(!is.na(mo)) %>%
{if(input$box2.3_pathogen != 0) {
filter(., pathogen_group == input$box2.3_pathogen | mo %in% mo_search)
} else {
.
}} %>%
count(mo) %>%
mutate(rank = rank(-n, ties.method = "first")) %>%
filter(rank >= min(input$box2.4_top) & rank <= max(input$box2.4_top))
patho_plot <- data_select() %>%
{if(input$box2.3_pathogen != 0) {
filter(., pathogen_group == input$box2.3_pathogen | mo %in% mo_search)
} else {
.
}} %>%
filter(mo %in% top_10$mo | mo %in% mo_search) %>%
mutate(show = if_else(!is.na(mo_search) & mo %in% mo_search, TRUE, FALSE))
patho_plot %>%
ggplot(aes(fct_rev(fct_infreq(mo_name(mo))),
tooltip = ..count..,
data_id = mo_name(mo),
fill = show)) +
geom_bar_interactive(
colour = "black"
) +
scale_fill_manual(breaks = c(TRUE, FALSE), values = c("red", "darkgrey")) +
scale_y_continuous(limits = if (max(patho_plot %>% count(mo) %>% pull(n)) < 25) {
c(0, 25)
} else {
c(0, max(patho_plot %>% count(mo) %>% pull(n)))
}) +
labs(x = "", y = "Count", title = "Number of first isolates detected") +
coord_flip() +
theme_minimal() +
theme(text = element_text(family = "Arial"),
legend.title = element_blank(),
legend.position = "none",
legend.text = element_text(margin = margin(l = 5)),
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.text = element_text(size = 12),
axis.text.y = element_text(face = "italic"),
plot.title = element_text(face = "bold", size = 14),
plot.caption = element_text(colour = "grey")) +
{if (input$box2.3_group != "group_all") {
facet_wrap(input$box2.3_group)
}} +
NULL
})
output$patho_plot <- renderGirafe({
ggiraph(ggobj = patho_plot(),
height_svg = 6,
width_svg = 10,
selection_type = "single")
})
output$down_box_patho <- download_box("pathogen_distribution", patho_plot())
# episode plot ---------------------------------------------------------------
test_plot <- reactive({
radar_data %>%
mutate(first_14 = first_isolate(radar_data, episode_days = 14, col_patient_id = "patientid"),
first_30 = first_isolate(radar_data, episode_days = 30, col_patient_id = "patientid"),
first_60 = first_isolate(radar_data, episode_days = 60, col_patient_id = "patientid")) %>%
group_by_at(input$box2.2_group) %>%
summarise("14 days" = sum(first_14, na.rm = TRUE),
"30 days" = sum(first_30, na.rm = TRUE),
"60 days" = sum(first_60, na.rm = TRUE)) %>%
pivot_longer(cols = c("14 days", "30 days", "60 days"))
})
output$test_plot <- renderPlot({
test_plot() %>%
ggplot(aes(value, name)) +
geom_col(colour = "black", fill = "lightgrey") +
labs(x = "Count", y = "Episode", title = "Number of first isolates per episode") +
theme_minimal() +
theme(text = element_text(family = "Arial"),
legend.title = element_blank(),
legend.text = element_text(margin = margin(l = 5)),
axis.title.y = element_blank(),
axis.text = element_text(size = 12),
plot.title = element_text(face = "bold", size = 14),
plot.caption = element_text(colour = "grey")) +
{if (input$box2.2_group != "group_all") {
facet_wrap(input$box2.2_group)
}} +
NULL
})
# BOX top right ------------------------------------------------------
output$box1 <- renderUI({
div(
style = "position: relative",
tabBox(
id = "box1",
width = NULL,
height = 500,
tabPanel(
title = "Resistance profile",
div(
style = "position: absolute; left: 0.5em; bottom: 0.5em;",
dropdown(
radioGroupButtons(
inputId = "box1.2_group",
label = "Select group",
choiceNames = c("All", "Year", "Gender", "Department", "Specialty", "Specialty code", "ICU status", "Clinical status", "Outward status"),
choiceValues = c("mo", "year", "gender", "department", "specialty", "specialism", "is_icu", "is_clinical", "is_outward"),
selected = "mo",
direction = "vertical"
),
size = "xs",
icon = icon("gear", class = "opt"),
up = TRUE
)
),
div(
style = "position: absolute; right: 3.5em; bottom: 0.5em;",
dropdown(
downloadButton(outputId = "down_box_res_prop", label = "Download plot"),
size = "xs",
icon = icon("download", class = "opt"),
up = TRUE,
right = TRUE
)
),
withSpinner(
girafeOutput("isolate_prop_plot", height = 400),
type = 4,
color = "#d33724",
size = 0.7
),
div(
style = "position:absolute;right:0.5em;bottom: 0.5em;",
conditionalPanel(
"input.box1 == 'Resistance profile'",
actionBttn(
inputId = "res_prop_plus",
icon = icon("search-plus", class = "opt"),
style = "fill",
color = "danger",
size = "xs"
)
)
)
),
tabPanel(
title = "Combination therapy",
withSpinner(
girafeOutput("comb_plot", height = 400),
type = 4,
color = "#d33724",
size = 0.7
),
div(
style = "position: absolute; left: 0.5em; bottom: 0.5em;",
dropdown(
label = "HANDLE WITH CARE",
radioGroupButtons(
inputId = "comb",
label = HTML("Please read the documentation before interpreting results and modifying underlying algorithm",
as.character(actionLink(inputId = "action_link", label = "(click here)", onclick = 'window.open("https://msberends.github.io/AMR/reference/proportion.html#combination-therapy")'))),
justified = TRUE,
width = 150,
choiceNames = c("Only all tested", "All"),
choiceValues = c(TRUE, FALSE),
size = "xs",
direction = "vertical"
),
icon = icon("info-circle"),
size = "xs",
up = TRUE
)
),
div(
style = "position: absolute; right: 3.5em; bottom: 0.5em;",
dropdown(
downloadButton(outputId = "down_box_comb_prop", label = "Download plot"),
size = "xs",
icon = icon("download", class = "opt"),
up = TRUE,
right = TRUE
)
),
div(
style = "position:absolute;right:0.5em;bottom: 0.5em;",
actionBttn(
inputId = "res_comb_plus",
icon = icon("search-plus", class = "opt"),
style = "fill",
color = "danger",
size = "xs"
)
)
)
)
)
})
observeEvent((input$res_prop_plus), {
showModal(modalDialog(
renderPlot({
isolate_prop_plot() + theme(
text = element_text(family = "Arial"),
axis.title = element_text(size = 20),
text = element_text(size = 20),
plot.title = element_text(size = 26)
)
}, height = 600),
easyClose = TRUE,
size = "l",
footer = NULL
))
})
observeEvent((input$res_comb_plus), {
showModal(modalDialog(
renderPlot({
comb_plot() + theme(
text = element_text(family = "Arial"),
axis.title = element_text(size = 20),
text = element_text(size = 20),
plot.title = element_text(size = 26)
)
}, height = 600),
easyClose = TRUE,
size = "l",
footer = NULL
))
})
# plot resistance proportion ---------------------------------------------------
isolate_prop_data <- reactive({
# mo_selected <- input$box1_mo
mo_selected <- input$patho_plot_selected
e_coli_ab <- c("Amoxicillin",
"Amoxicillin/clavulanic acid",
"Piperacillin/tazobactam",
"Cefuroxim",
"Ceftriaxone",
"Ceftazidime",
"Meropenem",
"Ciprofloxacin",
"Gentamicin",
"Tobramycin",
"Fosfomycin",
"Trimethoprim",
"Co-trimoxazole",
"Nitrofurantoine")
e_cloacae_ab <- c("Ciprofloxacin",
"Gentamicin",
"Tobramycin",
"Co-trimoxazole",
"Meropenem")
p_aeruginosa_ab <- c("Piperacillin/tazobactam",
"Ceftazidime",
"Meropenem",
"Ciprofloxacin",
"Gentamicin",
"Tobramycin")
s_aureus_ab <- c("Flucloxacillin",
"Penicillin",
"Ciprofloxacin",
"Gentamicin",
"Erythromycin",
"Clindamycin",
"Doxycycline",
"Linezolid",
"Co-trimoxazol",
"Rifampicin")
cons_ab <- c(#"Flucloxacillin",
"Ciprofloxacin",
"Gentamicin",
"Erythromycin",
"Clindamycin",
"Doxycycline",
"Linezolid",
"Co-trimoxazol",
"Rifampicin")
e_faecalis_ab <- c("Amoxicillin",
"Vancomycin")
get_resistance_df <- function(.data, mo_selected, abx, language = "en") {
.data %>%
filter(mo == as.mo(mo_selected)) %>%
{if (nrow(.) != 0) {
group_by_at(., input$box1.2_group) %>%
select(group_vars(.), as.character(as.ab(abx))) %>%
count_df(., translate_ab = "name", language = language)
}}
}
get_resistance_df(data_select(),
mo_selected = mo_selected,
abx = if (mo_genus(mo_selected) %in% mo_genus(c("E. coli",
"K. pneumoniae",
"P. mirabilis"))) {
e_coli_ab
} else if (mo_genus(mo_selected) %in% mo_genus(c("E. cloacae"))) {
e_cloacae_ab
} else if (mo_genus(mo_selected) %in% mo_genus(c("P. aeruginosa"))) {
p_aeruginosa_ab
} else if (as.mo(mo_selected) == as.mo("S. aureus")) {
s_aureus_ab
} else if (as.mo(mo_selected, Becker = TRUE) == as.mo("CoNS")) {
cons_ab
} else if (mo_genus(mo_selected) %in% mo_genus(c("E. faecalis"))) {
e_faecalis_ab
} else {
radar_data %>% select_if(is.rsi) %>% names()
}
) %>%
pivot_wider(names_from = interpretation, values_from = value) %>%
mutate(value_r = R,
value_si = SI,
all = R+SI,
percent_r = percent(R/all, 0.1),
percent_si = percent(SI/all, 0.1)) %>%
pivot_longer(cols = c("SI", "R"), names_to = "interpretation", values_to = "value") %>%
mutate(mo = as.mo(input$patho_plot_selected)) %>%
left_join(intrinsic_info) %>%
mutate(flag = if_else(intrinsic_r == TRUE, "(intrinsic resistance)", NA_character_))
})
isolate_prop_plot <- reactive({
if (class(try(isolate_prop_data())) == "try-error") {
ggplot(data.frame(), aes(x = 1, y = 1, label = "No tests available")) +
geom_text(size = 5, colour = "red", fontface = "bold", family = "Arial") +
theme_void()
} else {
ggplot(isolate_prop_data(), aes(value, reorder(antibiotic, value_r), fill = factor(interpretation, levels = c("SI", "R")),
tooltip = paste0("R = ", value_r, " (", percent_r, ")\n", "SI = ", value_si, " (", percent_si, ")")
)) +
geom_col_interactive(colour = "black", position = "fill") +
scale_fill_manual(limits = c("R", "SI"),
breaks = c("SI", "R"),
values = c("#FDE725FF", "#440154FF"),
na.value = "lightgrey") +
scale_x_continuous(labels = percent) +
geom_text(data = isolate_prop_data(), aes(0.5, reorder(antibiotic, value_r), label = flag), colour = "red") +
ggtitle(label = paste0("Selected isolates: *", mo_fullname(as.mo(input$patho_plot_selected)), "*"),
subtitle = if (any(isolate_prop_data()$all < 30)) {
"Minimum number of valid tests per agent not reached (n < 30)"
} else {
""
}) +
{if (input$box1.2_group != "mo") {
facet_wrap(input$box1.2_group)
}} +
theme_minimal() +
theme(text = element_text(family = "Arial"),
legend.title = element_blank(),
legend.text = element_text(margin = margin(l = 5)),
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.text = element_text(size = 12),
plot.title = ggtext::element_markdown(face = "bold", size = 14),
plot.subtitle = element_text(colour = "red", face = "bold"))
}
})
output$isolate_prop_plot <- renderGirafe({
validate(
need(input$patho_plot_selected, 'Please select from the tab: Isolates (and pathogens) detected'))
ggiraph(ggobj = isolate_prop_plot(),
height_svg = 6,
width_svg = 10,
selection_type = "single")
})
output$down_box_res_prop <- download_box("resistance_prop", isolate_prop_plot())
# combination therapy -----------------------------------------------------
comb_data <- reactive({
d <- data_select() %>%
filter(mo == as.mo(input$patho_plot_selected))
# resistance proportion
amc_tob <- d %>%
resistance(AMC, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
amc_gen <- d %>%
resistance(AMC, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
cxm_tob <- d %>%
resistance(CXM, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
cxm_gen <- d %>%
resistance(CXM, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
cro_tob <- d %>%
resistance(CRO, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
cro_gen <- d %>%
resistance(CRO, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
pip_taz_tob <- d %>%
resistance(TZP, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
pip_taz_gen <- d %>%
resistance(TZP, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
prop <- tibble(
"Amoxicillin/clavulanic acid &\nTobramycin" = amc_tob,
"Amoxicillin/clavulanic acid &\nGentamicin" = amc_gen,
"Cefuroxime &\nTobramycin" = cxm_tob,
"Cefuroxime & \nGentamicin" = cxm_gen,
"Ceftriaxone &\nTobramycin" = cro_tob,
"Ceftriaxone &\nGentamicin" = cro_gen,
"Piperacillin/tazobactam &\nTobramycin" = pip_taz_tob,
"Piperacillin/tazobactam &\nGentamicin" = pip_taz_gen) %>%
bind_rows(summarise_all(., ~.)) %>%
bind_rows(summarise_all(., ~1 - .)) %>%
bind_cols(interpretation = c("R", "R_max", "SI", "SI_max")) %>%
pivot_longer(cols = c("Amoxicillin/clavulanic acid &\nTobramycin":"Piperacillin/tazobactam &\nGentamicin")) %>%
pivot_wider(names_from = interpretation, values_from = value) %>%
pivot_longer(cols = c("R", "SI"), names_to = "interpretation")
amc_tob_c <- d %>%
count_R(AMC, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
amc_gen_c <- d %>%
count_R(AMC, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
cxm_tob_c <- d %>%
count_R(CXM, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
cxm_gen_c <- d %>%
count_R(CXM, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
cro_tob_c <- d %>%
count_R(CRO, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
cro_gen_c <- d %>%
count_R(CRO, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
pip_taz_tob_c <- d %>%
count_R(TZP, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
pip_taz_gen_c <- d %>%
count_R(TZP, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
# SI
amc_tob_c_si <- d %>%
count_SI(AMC, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
amc_gen_c_si <- d %>%
count_SI(AMC, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
cxm_tob_c_si <- d %>%
count_SI(CXM, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
cxm_gen_c_si <- d %>%
count_SI(CXM, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
cro_tob_c_si <- d %>%
count_SI(CRO, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
cro_gen_c_si <- d %>%
count_SI(CRO, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
pip_taz_tob_c_si <- d %>%
count_SI(TZP, TOB, only_all_tested = as.logical(input$comb), minimum = 0)
pip_taz_gen_c_si <- d %>%
count_SI(TZP, GEN, only_all_tested = as.logical(input$comb), minimum = 0)
count_r <- tibble(
"Amoxicillin/clavulanic acid &\nTobramycin" = amc_tob_c,
"Amoxicillin/clavulanic acid &\nGentamicin" = amc_gen_c,
"Cefuroxime &\nTobramycin" = cxm_tob_c,
"Cefuroxime & \nGentamicin" = cxm_gen_c,
"Ceftriaxone &\nTobramycin" = cro_tob_c,
"Ceftriaxone &\nGentamicin" = cro_gen_c,
"Piperacillin/tazobactam &\nTobramycin" = pip_taz_tob_c,
"Piperacillin/tazobactam &\nGentamicin" = pip_taz_gen_c) %>%
bind_cols(interpretation = c("R")) %>%
pivot_longer(cols = c("Amoxicillin/clavulanic acid &\nTobramycin":"Piperacillin/tazobactam &\nGentamicin")) %>%
pivot_wider(names_from = interpretation, values_from = value) %>%
pivot_longer(cols = "R", names_to = "interpretation", values_to = "count_r")
count_si <- tibble(
"Amoxicillin/clavulanic acid &\nTobramycin" = amc_tob_c_si,
"Amoxicillin/clavulanic acid &\nGentamicin" = amc_gen_c_si,
"Cefuroxime &\nTobramycin" = cxm_tob_c_si,
"Cefuroxime & \nGentamicin" = cxm_gen_c_si,
"Ceftriaxone &\nTobramycin" = cro_tob_c_si,
"Ceftriaxone &\nGentamicin" = cro_gen_c_si,
"Piperacillin/tazobactam &\nTobramycin" = pip_taz_tob_c_si,
"Piperacillin/tazobactam &\nGentamicin" = pip_taz_gen_c_si) %>%
bind_cols(interpretation = c("SI")) %>%
pivot_longer(cols = c("Amoxicillin/clavulanic acid &\nTobramycin":"Piperacillin/tazobactam &\nGentamicin")) %>%
pivot_wider(names_from = interpretation, values_from = value) %>%
pivot_longer(cols = "SI", names_to = "interpretation", values_to = "count_si")
prop %>%
left_join(count_r) %>%
left_join(count_si) %>%
pivot_longer(cols = c("count_r", "count_si"), names_to = "count", values_to = "value_count") %>%
filter(!is.na(value_count)) %>%
group_by(name) %>%
mutate(all = sum(value_count)) %>%
ungroup() %>%
mutate(value_count = paste0(value_count, " (", percent(value, 0.1), ")"))
})
comb_plot <- reactive({
if ((!as.mo(input$patho_plot_selected) %in% as.mo(c("E. coli", "K. pneumoniae")))) {
ggplot(data.frame(), aes(x = 1, y = 1, label = "No tests available\nor not applicable for selected isolate\n(results only available for E. coli and K. pneumoniae)")) +
geom_text(size = 5, colour = "red", fontface = "bold", family = "Arial") +
theme_void()
} else {
ggplot(comb_data(), aes(value, name,
fill = factor(interpretation, levels = c("SI", "R")),
tooltip = paste0("R = ", percent(R_max, 0.01))),
data_id = name) +
geom_col_interactive(colour = "black", position = "fill") +
scale_fill_manual(limits = c("R", "SI"),
breaks = c("SI", "R"),
values = c("#FDE725FF", "#440154FF"),
na.value = "lightgrey") +
scale_x_continuous(labels = percent) +
ggtitle(label = paste("Selected isolates: ", mo_fullname(as.mo(input$patho_plot_selected))),
subtitle = if (any(isolate_prop_data()$all < 30)) {
"Minimum number of valid tests per agent not reached (n < 30)"
} else {
""
}) +
theme_minimal() +
theme(text = element_text(family = "Arial"),
legend.title = element_blank(),
legend.text = element_text(margin = margin(l = 5)),
axis.title.y = element_blank(),
axis.title.x = element_blank(),
plot.title = element_text(face = "bold", size = 14),
axis.text = element_text(size = 12),
plot.subtitle = element_text(colour = "red", face = "bold")) +
{if (input$box1.2_group != "mo") {
facet_wrap(input$box1.2_group)
}} +
NULL
}
})
output$comb_plot <- renderGirafe({
validate(
need(input$patho_plot_selected, 'Please select from the tab: Isolates (and pathogens) detected'))
ggiraph(ggobj = comb_plot(),
height_svg = 6,
width_svg = 10,
selection_type = "single")
})
output$down_box_comb_prop <- download_box("resistance_combination", comb_plot())
# table -------------------------------------------------------------------
output$box3 <- renderUI({
div(
style = "position: relative",
tabBox(
id = "box3",
width = NULL,
height = 550,
tabPanel(title = "",
dataTableOutput("test_table"),
style = "height:500px; overflow-y: scroll;overflow-x: scroll;")))
})
dt_custom <- function(data) {
datatable(data, rownames = FALSE,
extensions = c('Buttons', 'Scroller'),
options = list(
dom = "Bftp",
buttons =
list("copy", list(
extend = "collection",
buttons = c("csv", "excel", "pdf"),
text = "Download")),
lengthMenu = list( c(10, 20, -1), c(10, 20, "All")) ,
pageLength = -1,
columnDefs = list(list(className = 'dt-right', targets = "_all"))))
}
output$test_table <- renderDataTable({
# isolate_prop_data() %>%
if (input$box2 == "Positive & negative cultures") {
all <- radar_data %>%
filter(specialty_shiny %in% input$specialtyInput & department %in% input$departmentInput) %>%
rename(group = input$box2.1_group) %>%
filter(!is.na(group)) %>%
distinct(patientid, .keep_all = TRUE) %>%
count(group) %>%
rename(n_all = n)
pos <- radar_data %>%
filter(specialty_shiny %in% input$specialtyInput & department %in% input$departmentInput) %>%
rename(group = input$box2.1_group) %>%
group_by(group) %>%
# group_by_at("gender") %>%
filter(!is.na(mo)) %>%
distinct(patientid) %>%
count(group) %>%
# count_("gender") %>%
left_join(all) %>%
mutate(n_rel = percent(n/n_all, 0.1)) %>%
select(group, n, n_rel, n_all) %>%
rename("Patients (n) with at least 1 positive culture" = n,
"Patients (%) with at least 1 positive culture" = n_rel,
"All patients (n)" = n_all) %>%
{if (input$box2.1_group == "group_all") {
# select(., -group)
mutate(., group = "All patients")
} else {
.
}
} %>%
rename_all(str_to_sentence) %>%
dt_custom()
} else if (input$box2 == "First isolates per episode") {
test_plot() %>%
select("Episode selected" = name, "First isolates" = value) %>%
dt_custom()
} else {
data_select() %>%
freq(mo) %>%
mutate(Name = mo_name(item),
percent = percent(percent, accuracy = 0.1),
cum_percent = percent(cum_percent)) %>%
select(-cum_percent) %>%
select(Name, n = count, "%" = percent, "n (cummulative)" = cum_count) %>%
dt_custom()
}
})
output$box4 <- renderUI({
div(
style = "position: relative",
tabBox(
id = "box4",
width = NULL,
height = 550,
tabPanel(title = "",
dataTableOutput("res_table"), style = "height:500px; overflow-y: scroll;")))
})
output$res_table <- renderDataTable({
validate(
need(input$patho_plot_selected, 'Please select from the tab: Isolates (and pathogens) detected'))
if (class(try(isolate_prop_data())) == "try-error") {
data.frame()
} else {
if (input$box1 == "Resistance profile") {
isolate_prop_data() %>%
group_by(antibiotic) %>%
mutate(percent = percent(value/all, 0.1),
join = paste0(value, " (", percent, ")")) %>%
pivot_wider(id_cols = c(antibiotic, all), names_from = interpretation, values_from = join) %>%
rename(Antibiotic = antibiotic,
total = all) %>%
dt_custom()
} else {
if (as.mo(input$patho_plot_selected) %in% as.mo(c("E. coli", "K. pneumoniae"))) {
comb_data() %>%
pivot_wider(id_cols = c(name, all), names_from = interpretation, values_from = value_count) %>%
select(Combination = name, total = all, SI, R) %>%
dt_custom()
} else {
data.frame()
}
}
}
})
}