Compare commits

...

18 Commits

Author SHA1 Message Date
42b2d340c5 Added changes to readme 2021-11-01 16:41:25 +01:00
55b27c57a6 Swapped base R plots for ggplot 2021-11-01 14:42:49 +01:00
a620b4e5d2 Fixed bug that caused incompatibility with biobase due to having the same function name.
Added new profiling functions.
2021-11-01 14:25:43 +01:00
0427dcc6ad Removed uniused variable 2021-10-05 15:00:42 +02:00
f4b6748210 Fixed variable name issue in remove.background function 2020-06-08 10:15:27 +02:00
40765c3a42 updated readme and made the new function match the rest of the formatting 2020-04-27 15:50:48 +02:00
c457e087be Added recommended empty cutoff function 2020-04-27 13:40:04 +02:00
48dc9d81e6 Fixed Readme 2020-03-26 15:19:45 +01:00
92cb2a655b Fixed a bug where base rowSums were used instead of Matrix rowSums 2020-03-26 15:10:24 +01:00
c7a8c6a881 Updated Readme 2020-03-26 14:12:27 +01:00
a47d8aa4c9 Updated Readme 2020-03-26 14:09:20 +01:00
7b7fe13c75 Updated Readme 2020-03-26 12:08:24 +01:00
e7ac549311 Updated Readme 2020-03-26 12:05:04 +01:00
7a2607a091 Improved Readme 2020-03-26 11:51:08 +01:00
1233c8a3be Changed the DESCRIPTION to include dependencies 2020-03-26 10:49:56 +01:00
c09281b51b Made FastCAR into an actual R package, removed testing and running scripts 2020-03-26 10:32:38 +01:00
c3d24a4302 Merge https://git.web.rug.nl/P278949/FastCAR
First commit of FastCAR
2020-03-25 15:27:48 +01:00
cd967fa821 Commiting just the actual package code 2020-03-25 15:18:06 +01:00
11 changed files with 454 additions and 1 deletions

2
.Rbuildignore Normal file
View File

@ -0,0 +1,2 @@
^.*\.Rproj$
^\.Rproj\.user$

4
.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
.Rproj.user
.Rhistory
.RData
.Ruserdata

16
DESCRIPTION Normal file
View File

@ -0,0 +1,16 @@
Package: FastCAR
Type: Package
Title: Fast Correction of Ambient RNA
Version: 0.1.0
Author: Marijn Berg
Maintainer: Marijn Berg <m.berg@umcg.nl>
Description: FastCAR is used to correct gene expression of cells in droplet based single cell RNA
sequencing data. It corrects for ambient RNA, RNA originating from lysed cells in the cell suspension.
License: GPL-3
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.0.9000
Imports:
Matrix,
Seurat,
qlcMatrix

20
FastCAR.Rproj Normal file
View File

@ -0,0 +1,20 @@
Version: 1.0
RestoreWorkspace: Default
SaveWorkspace: Default
AlwaysSaveHistory: Default
EnableCodeIndexing: Yes
UseSpacesForTab: Yes
NumSpacesForTab: 2
Encoding: UTF-8
RnwWeave: Sweave
LaTeX: pdfLaTeX
AutoAppendNewline: Yes
StripTrailingWhitespace: Yes
BuildType: Package
PackageUseDevtools: Yes
PackageInstallArgs: --no-multiarch --with-keep.source

BIN
Images/Counts_removed.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

BIN
Images/DE_affect_chance.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

BIN
Images/Example_profile.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

1
NAMESPACE Normal file
View File

@ -0,0 +1 @@
exportPattern("^[[:alpha:]]+")

261
R/FastCAR_Base.R Normal file
View File

@ -0,0 +1,261 @@
###############################################################################
# FastCAR package
# Marijn Berg
# m.berg@umcg.nl
###############################################################################
# FastCAR removes ambient RNA from 10X data by looking at the profile of the
# empty droplets and removing per gene the highest value found in the ambient
# RNA if it's found to contaminate more than a certain threshold of droplets
###############################################################################
# TODO
#
###############################################################################
library(Matrix)
library(Seurat)
library(qlcMatrix)
library(pheatmap)
library(ggplot2)
library(gridExtra)
###############################################################################
# had to make this function to efficiently modify sparse matrices on a per gene basis
# A dgCMatrix object has the following elements that matter for this function
# i: a sequence of the row locations of each non-zero element
# x: the non-zero values in the matrix
# p: the where in 'i' and 'x' a new column starts
# Dimnames: The names of the rows and columns
remove.background = function(geneCellMatrix, ambientRNAprofile){
# do some input checks first
if(!("dgCMatrix" %in% class(geneCellMatrix))){
cat("geneCellMatrix should be a sparse matrix of the \"dgCMatrix\" class")
stop()
}
# Here is the actual functionality
for(gene in names(ambientRNAprofile[ambientRNAprofile > 0])){
# Determine the locations where the gene is not zero, therefore referenced in i
iLocs = which(geneCellMatrix@Dimnames[[1]] == gene)
# Determine the location of the actual values,
xLocs = which(geneCellMatrix@i == iLocs-1) # -1 because of 0 and 1 based counting systems
# Remove the contaminating RNA
geneCellMatrix@x[xLocs] = geneCellMatrix@x[xLocs] - ambientRNAprofile[gene]
}
# correct for instances where the expression was corrected to below zero
geneCellMatrix@x[geneCellMatrix@x < 0] = 0
# remove the zeroes and return the corrected matrix
return(drop0(geneCellMatrix, is.Csparse = TRUE))
}
##############
determine.background.to.remove = function(fullCellMatrix, emptyDropletCutoff, contaminationChanceCutoff){
# determines the highest expression value found for every gene in the droplets that we're sure don't contain cells
backGroundMax = as.vector(qlcMatrix::rowMax(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyDropletCutoff]))
names(backGroundMax) = rownames(fullCellMatrix)
# droplets that are empty but not unused barcodes, unused barcodes have zero reads assigned to them.
nEmpty = table((Matrix::colSums(fullCellMatrix) < emptyDropletCutoff) &(Matrix::colSums(fullCellMatrix) > 0))[2]
# rowSum on a logical statement returns the number of TRUE occurences
occurences = Matrix::rowSums(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyDropletCutoff] !=0)
#probability of a background read of a gene ending up in a cell
probabiltyCellContaminationPerGene = occurences / nEmpty
# if the probablity of a gene contaminating a cell is too low we set the value to zero so it doesn't get corrected
backGroundMax[probabiltyCellContaminationPerGene < contaminationChanceCutoff] = 0
return(backGroundMax)
}
##############
read.cell.matrix = function(cellFolderLocation){
cellMatrix = Read10X(cellFolderLocation)
return(cellMatrix)
}
##############
read.full.matrix = function(fullFolderLocation){
fullMatrix = Read10X(fullFolderLocation)
return(fullMatrix)
}
###############################################################################
getExpressionThreshold = function(gene, expMat, percentile){
orderedExpression = expMat[gene, order(expMat[gene,], decreasing = TRUE)]
CS = cumsum(orderedExpression)
return(orderedExpression[which(CS/max(CS) > percentile)[1]])
}
###############################################################################
celltypeSpecificityScore = function(gene, expMat){
CS = cumsum(expMat[gene, order(expMat[gene,], decreasing = TRUE)])
return((sum(CS/max(CS))/ncol(expMat)) )
}
###############################################################################
describe.correction.effect = function (allExpression, cellExpression, startPos, stopPos, byLength, contaminationChanceCutoff){
# Make somewhere to store all the data that needs to be returned to the user
ambientScoreProfileOverview = data.frame(row.names = rownames(cellExpression))
# do a quick first run to see which genes get corrected at the highest setting
ambientProfile = determine.background.to.remove(allExpression, cellExpression, stopPos, contaminationChanceCutoff)
genelist = names(ambientProfile[ambientProfile > 0])
print(paste0("Calculating cell expression score for ", length(genelist), " genes"))
ctsScores = vector(mode = "numeric", length = nrow(cellExpression))
names(ctsScores) = rownames(cellExpression)
for(gene in genelist){
ctsScores[gene] = celltypeSpecificityScore(gene, cellExpression)
}
# loop over every threshold to test
# Starts at the highest value so
for(emptyDropletCutoff in seq(from = startPos, to = stopPos, by = byLength)){
ambientProfile = determine.background.to.remove(allExpression, cellExpression, emptyDropletCutoff, contaminationChanceCutoff)
print(paste0("Profiling at cutoff ", emptyDropletCutoff))
ambientScoreProfile = data.frame(ambientProfile, ctsScores)
#ambientScoreProfile = ambientScoreProfile[ambientScoreProfile$ctsScores > 0.85, ]
ambientScoreProfile$stillOverAmbient = 0
ambientScoreProfile$belowCellexpression = 0
genesToCheck = names(ambientProfile[ambientProfile > 0])
if(exists("overAmbientGenes")){
genesToCheck = overAmbientGenes
}
print(paste0("Calculating profiles for ", length(genesToCheck), " genes"))
for(gene in genesToCheck){
expThresh = getExpressionThreshold(gene, cellExpression, 0.95)
if(emptyDropletCutoff == startPos){
ambientScoreProfile[gene, "belowCellexpression"] = table(cellExpression[gene,] > 0 & cellExpression[gene,] < expThresh)["TRUE"]
}
ambientScoreProfile[gene, "stillOverAmbient"] = table(cellExpression[gene,] > ambientScoreProfile[gene, "ambientProfile"] & cellExpression[gene,] < expThresh)["TRUE"]
}
ambientScoreProfile[is.na(ambientScoreProfile)] = 0
ambientScoreProfile$contaminationChance = ambientScoreProfile$stillOverAmbient / ambientScoreProfile$belowCellexpression
ambientScoreProfile[is.na(ambientScoreProfile)] = 0
# Genes that have already been completely removed don't need to be checked at higher resolution
overAmbientGenes = rownames(ambientScoreProfile[ambientScoreProfile$stillOverAmbient > 0,])
ambientScoreProfile[genelist,"AmbientCorrection"]
ambientScoreProfileOverview[names(ctsScores), "ctsScores"] = ctsScores
if(emptyDropletCutoff == startPos){
ambientScoreProfileOverview[rownames(ambientScoreProfile), "belowCellexpression"] = ambientScoreProfile$belowCellexpression
}
ambientScoreProfileOverview[rownames(ambientScoreProfile), paste0("stillOverAmbient", as.character(emptyDropletCutoff))] = ambientScoreProfile$stillOverAmbient
ambientScoreProfileOverview[rownames(ambientScoreProfile), paste0("AmbientCorrection", as.character(emptyDropletCutoff))] = ambientScoreProfile$ambientProfile
}
ambientScoreProfileOverview = ambientScoreProfileOverview[!is.na(ambientScoreProfileOverview$ctsScores),]
ambientScoreProfileOverview[is.na(ambientScoreProfileOverview)] = 0
ambientScoreProfileOverview[,paste0("Threshold_", seq(from = startPos, to = stopPos, by = byLength))] = ambientScoreProfileOverview[,paste0("stillOverAmbient", as.character(seq(from = startPos, to = stopPos, by = byLength)))] / ambientScoreProfileOverview$belowCellexpression
ambientScoreProfileOverview[is.na(ambientScoreProfileOverview)] = 0
ambientScoreProfileOverview[,paste0("contaminationChance", as.character(seq(from = startPos, to = stopPos, by = byLength)))] = ambientScoreProfileOverview[,paste0("stillOverAmbient", as.character(seq(from = startPos, to = stopPos, by = byLength)))] / ambientScoreProfileOverview$belowCellexpression
return(ambientScoreProfileOverview)
}
##############
# Turns out that cellranger output looks different from WriteMM output and Read10X can't read the latter
# TODO
# Commented out until I find a fix
# write.corrected.matrix = function(correctedMatrix, folderLocation, correctedSignal){
# dir.create(folderLocation)
#
# writeMM(obj = correctedMatrix, file=paste(folderLocation, "/matrix.mtx", sep = ""))
#
# # save genes and cells names
# write(x = rownames(correctedMatrix), file = paste(folderLocation, "/genes.tsv", sep = ""))
# write(x = colnames(correctedMatrix), file = paste(folderLocation, "/barcodes.tsv", sep = ""))
#
# correctedSignal = correctedSignal[correctedSignal > 0]
# write.table(list(correctedSignal), file = paste(folderLocation, "/genesCorrectedFor.csv", sep = ""), row.names = TRUE, col.names = FALSE)
#
# }
# describe the number of genes identified in the background
# and the number of genes failing the contamination chance threshold
#
describe.ambient.RNA.sequence = function(fullCellMatrix, start, stop, by, contaminationChanceCutoff){
cutoffValue = seq(start, stop, by)
genesInBackground = vector(mode = "numeric", length = length(seq(start, stop, by)))
genesContaminating = vector(mode = "numeric", length = length(seq(start, stop, by)))
nEmptyDroplets = vector(mode = "numeric", length = length(seq(start, stop, by)))
ambientDescriptions = data.frame(nEmptyDroplets, genesInBackground, genesContaminating, cutoffValue)
rownames(ambientDescriptions) = seq(start, stop, by)
for(emptyCutoff in seq(start, stop, by)){
nEmpty = table((Matrix::colSums(fullCellMatrix) < emptyCutoff) &(Matrix::colSums(fullCellMatrix) > 0))[2]
occurences = Matrix::rowSums(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyCutoff] !=0)
#probability of a background read of a gene ending up in a cell
probabiltyCellContaminationPerGene = occurences / nEmpty
nFailingThreshold = sum(probabiltyCellContaminationPerGene > contaminationChanceCutoff)
nGenes = sum(occurences != 0)
ambientDescriptions[as.character(emptyCutoff), c(1,2,3)] = c(nEmpty ,nGenes, nFailingThreshold)
}
return(ambientDescriptions)
}
plot.correction.effect.chance = function(correctionProfile){
pheatmap(correctionProfile[correctionProfile[,3] > 0, colnames(correctionProfile)[grep("contaminationChance", colnames(correctionProfile))]],
cluster_cols = FALSE,
treeheight_row = 0,
main = "Chance of affecting DE analyses")
}
plot.correction.effect.removal = function(correctionProfile){
pheatmap(correctionProfile[(correctionProfile[,3] > 0) ,colnames(correctionProfile)[grep("AmbientCorrection", colnames(correctionProfile))]],
cluster_cols = FALSE, treeheight_row = 0,
main = "Counts removed from each cell")
}
plot.ambient.profile = function(ambientProfile){
p1 = ggplot(ambientProfile, aes(x=cutoffValue, y=genesInBackground)) + geom_point()
p2= ggplot(ambientProfile, aes(x=cutoffValue, y=genesContaminating)) + geom_point()
p3 = ggplot(ambientProfile, aes(x=cutoffValue, y=nEmptyDroplets)) + geom_point()
grid.arrange(p1, p2, p3, nrow = 3)
}
# I noticed that the number of genes removed tends to even out over time
# Test whether the point where this first happens is a good empty cutoff point
recommend.empty.cutoff = function(ambientProfile){
highestNumberOfGenes = max(ambientProfile[,3])
firstOccurence = match(highestNumberOfGenes, ambientProfile[,3])
return(as.numeric(rownames(ambientProfile[firstOccurence,])))
}

139
README.md
View File

@ -1,3 +1,140 @@
# FastCAR
Repo for the FastCAR (Fast Correction of Ambient RNA) R package and maybe eventual python library
FastCAR is an R package to remove ambient RNA from cells in droplet based single cell RNA sequencing data.
### Installation
FastCAR can be installed from git with the following command.
```
devtools::install_git("https://git.web.rug.nl/P278949/FastCAR")
```
Running FastCAR is quite simple.
First load the library and dependencies.
```
library(Matrix)
library(Seurat)
library(qlcMatrix)
library(pheatmap)
library(ggplot2)
library(gridExtra)
```
Specify the locations of the expression matrices
```
cellExpressionFolder = c("Cellranger_output/sample1/filtered_feature_bc_matrix/")
fullMatrixFolder = c("Cellranger_output/sample1/raw_feature_bc_matrix/")
```
Load both the cell matrix and the full matrix
```
cellMatrix = read.cell.matrix(cellExpressionFolder)
fullMatrix = read.full.matrix(fullMatrixFolder)
```
The following functions give an idea of the effect that different settings have on the ambient RNA profile.
These are optional as they do take a few minutes and the default settings work fine
Plotting the number of empty droplets, the number of genes identified in the ambient RNA, and the number of genes that will be corrected for at different UMI cutoffs,
```
ambProfile = describe.ambient.RNA.sequence(fullCellMatrix = fullMatrix,
start = 10,
stop = 500,
by = 10,
contaminationChanceCutoff = 0.05)
plot.ambient.profile(ambProfile)
```
![picture](Images/Example_profile.png)
The actual effect on the chances of genes affecting your DE analyses can be determined and visualized with the following function
```
correctionEffectProfile = describe.correction.effect(allExpression, cellExpression, 50, 500, 10, 0.05)
plot.correction.effect.chance(correctionEffectProfile)
```
![picture](Images/DE_affect_chance.png)
How many reads will be removed of these genes can be visualized from the same profile
```
plot.correction.effect.removal(correctionEffectProfile)
```
![picture](Images/Counts_removed.png)
Set the empty droplet cutoff and the contamination chance cutoff
The empty droplet cutoff is the number of UMIs a droplet can contain at the most to be considered empty.
100 works fine but we tested this method in only one tissue. For other tissues these settings may need to be changed.
Increasing this number also increases the highest possible value of expression of a given gene.
As the correction will remove this value from every cell it is adviced not to set this too high and thereby overcorrect the expression in lowly expressing cells.
The contamination chance cutoff is the allowed probability of a gene contaminating a cell.
As we developed FastCAR specifically for differential expression analyses between groups we suggest setting this such that not enough cells could be contaminated to affect this.
In a cluster of a thousand cells divided into two groups there would be 2-3 cells per group with ambient RNA contamination of any given gene.
Such low cell numbers are disregarded for differential expression analyses.
There is an experimental function that gives a recommendation based on the ambient profiling results.
This selects the first instance of the maximum number of genes being corrected for.
I have no idea yet if this is actually a good idea.
```
emptyDropletCutoff = recommend.empty.cutoff(ambProfile)
```
```
emptyDropletCutoff = 150
contaminationChanceCutoff = 0.005
```
Determine the ambient RNA profile and remove the ambient RNA from each cell
```
ambientProfile = determine.background.to.remove(fullMatrix, cellMatrix, emptyDropletCutoff, contaminationChanceCutoff)
cellMatrix = remove.background(cellMatrix, ambientProfile)
```
This corrected matrix can be used to to make a Seurat object
```
seuratObject = CreateSeuratObject(cellMatrix)
```
## Authors
* **Marijn Berg** - m.berg@umcg.nl
## License
This project is licensed under the GPL-3 License - see the [LICENSE.md](LICENSE.md) file for details
## Changelog
### v0.1
First fully working version of the R package
### v0.2
Fixed function to write the corrected matrix to file.
Added readout of which genes will be corrected for and how many reads will be removed per cell
Added some input checks to functions
### v0.2
Fixed a bug that caused FastCAR to be incompatible with biobase libraries
Added better profiling to determine the effect of different settings on the corrections
Swapped base R plots for ggplot2 plots

12
man/hello.Rd Normal file
View File

@ -0,0 +1,12 @@
\name{hello}
\alias{hello}
\title{Hello, World!}
\usage{
hello()
}
\description{
Prints 'Hello, world!'.
}
\examples{
hello()
}