Compare commits
18 Commits
2121cbd359
...
master
Author | SHA1 | Date | |
---|---|---|---|
42b2d340c5 | |||
55b27c57a6 | |||
a620b4e5d2 | |||
0427dcc6ad | |||
f4b6748210 | |||
40765c3a42 | |||
c457e087be | |||
48dc9d81e6 | |||
92cb2a655b | |||
c7a8c6a881 | |||
a47d8aa4c9 | |||
7b7fe13c75 | |||
e7ac549311 | |||
7a2607a091 | |||
1233c8a3be | |||
c09281b51b | |||
c3d24a4302 | |||
cd967fa821 |
2
.Rbuildignore
Normal file
2
.Rbuildignore
Normal file
@ -0,0 +1,2 @@
|
||||
^.*\.Rproj$
|
||||
^\.Rproj\.user$
|
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
.Rproj.user
|
||||
.Rhistory
|
||||
.RData
|
||||
.Ruserdata
|
16
DESCRIPTION
Normal file
16
DESCRIPTION
Normal file
@ -0,0 +1,16 @@
|
||||
Package: FastCAR
|
||||
Type: Package
|
||||
Title: Fast Correction of Ambient RNA
|
||||
Version: 0.1.0
|
||||
Author: Marijn Berg
|
||||
Maintainer: Marijn Berg <m.berg@umcg.nl>
|
||||
Description: FastCAR is used to correct gene expression of cells in droplet based single cell RNA
|
||||
sequencing data. It corrects for ambient RNA, RNA originating from lysed cells in the cell suspension.
|
||||
License: GPL-3
|
||||
Encoding: UTF-8
|
||||
LazyData: true
|
||||
RoxygenNote: 7.1.0.9000
|
||||
Imports:
|
||||
Matrix,
|
||||
Seurat,
|
||||
qlcMatrix
|
20
FastCAR.Rproj
Normal file
20
FastCAR.Rproj
Normal file
@ -0,0 +1,20 @@
|
||||
Version: 1.0
|
||||
|
||||
RestoreWorkspace: Default
|
||||
SaveWorkspace: Default
|
||||
AlwaysSaveHistory: Default
|
||||
|
||||
EnableCodeIndexing: Yes
|
||||
UseSpacesForTab: Yes
|
||||
NumSpacesForTab: 2
|
||||
Encoding: UTF-8
|
||||
|
||||
RnwWeave: Sweave
|
||||
LaTeX: pdfLaTeX
|
||||
|
||||
AutoAppendNewline: Yes
|
||||
StripTrailingWhitespace: Yes
|
||||
|
||||
BuildType: Package
|
||||
PackageUseDevtools: Yes
|
||||
PackageInstallArgs: --no-multiarch --with-keep.source
|
BIN
Images/Counts_removed.png
Normal file
BIN
Images/Counts_removed.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 96 KiB |
BIN
Images/DE_affect_chance.png
Normal file
BIN
Images/DE_affect_chance.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 98 KiB |
BIN
Images/Example_profile.png
Normal file
BIN
Images/Example_profile.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
261
R/FastCAR_Base.R
Normal file
261
R/FastCAR_Base.R
Normal file
@ -0,0 +1,261 @@
|
||||
###############################################################################
|
||||
# FastCAR package
|
||||
# Marijn Berg
|
||||
# m.berg@umcg.nl
|
||||
###############################################################################
|
||||
# FastCAR removes ambient RNA from 10X data by looking at the profile of the
|
||||
# empty droplets and removing per gene the highest value found in the ambient
|
||||
# RNA if it's found to contaminate more than a certain threshold of droplets
|
||||
###############################################################################
|
||||
# TODO
|
||||
#
|
||||
###############################################################################
|
||||
library(Matrix)
|
||||
library(Seurat)
|
||||
library(qlcMatrix)
|
||||
library(pheatmap)
|
||||
library(ggplot2)
|
||||
library(gridExtra)
|
||||
|
||||
###############################################################################
|
||||
|
||||
# had to make this function to efficiently modify sparse matrices on a per gene basis
|
||||
# A dgCMatrix object has the following elements that matter for this function
|
||||
# i: a sequence of the row locations of each non-zero element
|
||||
# x: the non-zero values in the matrix
|
||||
# p: the where in 'i' and 'x' a new column starts
|
||||
# Dimnames: The names of the rows and columns
|
||||
remove.background = function(geneCellMatrix, ambientRNAprofile){
|
||||
# do some input checks first
|
||||
if(!("dgCMatrix" %in% class(geneCellMatrix))){
|
||||
cat("geneCellMatrix should be a sparse matrix of the \"dgCMatrix\" class")
|
||||
stop()
|
||||
}
|
||||
|
||||
|
||||
# Here is the actual functionality
|
||||
for(gene in names(ambientRNAprofile[ambientRNAprofile > 0])){
|
||||
# Determine the locations where the gene is not zero, therefore referenced in i
|
||||
iLocs = which(geneCellMatrix@Dimnames[[1]] == gene)
|
||||
# Determine the location of the actual values,
|
||||
xLocs = which(geneCellMatrix@i == iLocs-1) # -1 because of 0 and 1 based counting systems
|
||||
# Remove the contaminating RNA
|
||||
geneCellMatrix@x[xLocs] = geneCellMatrix@x[xLocs] - ambientRNAprofile[gene]
|
||||
}
|
||||
# correct for instances where the expression was corrected to below zero
|
||||
geneCellMatrix@x[geneCellMatrix@x < 0] = 0
|
||||
# remove the zeroes and return the corrected matrix
|
||||
return(drop0(geneCellMatrix, is.Csparse = TRUE))
|
||||
}
|
||||
##############
|
||||
|
||||
determine.background.to.remove = function(fullCellMatrix, emptyDropletCutoff, contaminationChanceCutoff){
|
||||
|
||||
# determines the highest expression value found for every gene in the droplets that we're sure don't contain cells
|
||||
backGroundMax = as.vector(qlcMatrix::rowMax(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyDropletCutoff]))
|
||||
names(backGroundMax) = rownames(fullCellMatrix)
|
||||
|
||||
# droplets that are empty but not unused barcodes, unused barcodes have zero reads assigned to them.
|
||||
nEmpty = table((Matrix::colSums(fullCellMatrix) < emptyDropletCutoff) &(Matrix::colSums(fullCellMatrix) > 0))[2]
|
||||
# rowSum on a logical statement returns the number of TRUE occurences
|
||||
occurences = Matrix::rowSums(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyDropletCutoff] !=0)
|
||||
|
||||
#probability of a background read of a gene ending up in a cell
|
||||
probabiltyCellContaminationPerGene = occurences / nEmpty
|
||||
|
||||
# if the probablity of a gene contaminating a cell is too low we set the value to zero so it doesn't get corrected
|
||||
backGroundMax[probabiltyCellContaminationPerGene < contaminationChanceCutoff] = 0
|
||||
return(backGroundMax)
|
||||
}
|
||||
|
||||
##############
|
||||
|
||||
read.cell.matrix = function(cellFolderLocation){
|
||||
cellMatrix = Read10X(cellFolderLocation)
|
||||
return(cellMatrix)
|
||||
}
|
||||
|
||||
##############
|
||||
|
||||
read.full.matrix = function(fullFolderLocation){
|
||||
fullMatrix = Read10X(fullFolderLocation)
|
||||
return(fullMatrix)
|
||||
}
|
||||
|
||||
###############################################################################
|
||||
getExpressionThreshold = function(gene, expMat, percentile){
|
||||
orderedExpression = expMat[gene, order(expMat[gene,], decreasing = TRUE)]
|
||||
CS = cumsum(orderedExpression)
|
||||
return(orderedExpression[which(CS/max(CS) > percentile)[1]])
|
||||
}
|
||||
|
||||
###############################################################################
|
||||
celltypeSpecificityScore = function(gene, expMat){
|
||||
CS = cumsum(expMat[gene, order(expMat[gene,], decreasing = TRUE)])
|
||||
return((sum(CS/max(CS))/ncol(expMat)) )
|
||||
}
|
||||
|
||||
###############################################################################
|
||||
describe.correction.effect = function (allExpression, cellExpression, startPos, stopPos, byLength, contaminationChanceCutoff){
|
||||
|
||||
# Make somewhere to store all the data that needs to be returned to the user
|
||||
ambientScoreProfileOverview = data.frame(row.names = rownames(cellExpression))
|
||||
|
||||
# do a quick first run to see which genes get corrected at the highest setting
|
||||
ambientProfile = determine.background.to.remove(allExpression, cellExpression, stopPos, contaminationChanceCutoff)
|
||||
genelist = names(ambientProfile[ambientProfile > 0])
|
||||
|
||||
print(paste0("Calculating cell expression score for ", length(genelist), " genes"))
|
||||
ctsScores = vector(mode = "numeric", length = nrow(cellExpression))
|
||||
names(ctsScores) = rownames(cellExpression)
|
||||
|
||||
for(gene in genelist){
|
||||
ctsScores[gene] = celltypeSpecificityScore(gene, cellExpression)
|
||||
}
|
||||
|
||||
# loop over every threshold to test
|
||||
# Starts at the highest value so
|
||||
for(emptyDropletCutoff in seq(from = startPos, to = stopPos, by = byLength)){
|
||||
ambientProfile = determine.background.to.remove(allExpression, cellExpression, emptyDropletCutoff, contaminationChanceCutoff)
|
||||
|
||||
print(paste0("Profiling at cutoff ", emptyDropletCutoff))
|
||||
|
||||
ambientScoreProfile = data.frame(ambientProfile, ctsScores)
|
||||
#ambientScoreProfile = ambientScoreProfile[ambientScoreProfile$ctsScores > 0.85, ]
|
||||
ambientScoreProfile$stillOverAmbient = 0
|
||||
ambientScoreProfile$belowCellexpression = 0
|
||||
|
||||
genesToCheck = names(ambientProfile[ambientProfile > 0])
|
||||
if(exists("overAmbientGenes")){
|
||||
genesToCheck = overAmbientGenes
|
||||
}
|
||||
|
||||
print(paste0("Calculating profiles for ", length(genesToCheck), " genes"))
|
||||
|
||||
for(gene in genesToCheck){
|
||||
expThresh = getExpressionThreshold(gene, cellExpression, 0.95)
|
||||
|
||||
if(emptyDropletCutoff == startPos){
|
||||
ambientScoreProfile[gene, "belowCellexpression"] = table(cellExpression[gene,] > 0 & cellExpression[gene,] < expThresh)["TRUE"]
|
||||
}
|
||||
ambientScoreProfile[gene, "stillOverAmbient"] = table(cellExpression[gene,] > ambientScoreProfile[gene, "ambientProfile"] & cellExpression[gene,] < expThresh)["TRUE"]
|
||||
}
|
||||
|
||||
ambientScoreProfile[is.na(ambientScoreProfile)] = 0
|
||||
ambientScoreProfile$contaminationChance = ambientScoreProfile$stillOverAmbient / ambientScoreProfile$belowCellexpression
|
||||
ambientScoreProfile[is.na(ambientScoreProfile)] = 0
|
||||
|
||||
# Genes that have already been completely removed don't need to be checked at higher resolution
|
||||
overAmbientGenes = rownames(ambientScoreProfile[ambientScoreProfile$stillOverAmbient > 0,])
|
||||
|
||||
ambientScoreProfile[genelist,"AmbientCorrection"]
|
||||
|
||||
ambientScoreProfileOverview[names(ctsScores), "ctsScores"] = ctsScores
|
||||
if(emptyDropletCutoff == startPos){
|
||||
ambientScoreProfileOverview[rownames(ambientScoreProfile), "belowCellexpression"] = ambientScoreProfile$belowCellexpression
|
||||
}
|
||||
ambientScoreProfileOverview[rownames(ambientScoreProfile), paste0("stillOverAmbient", as.character(emptyDropletCutoff))] = ambientScoreProfile$stillOverAmbient
|
||||
ambientScoreProfileOverview[rownames(ambientScoreProfile), paste0("AmbientCorrection", as.character(emptyDropletCutoff))] = ambientScoreProfile$ambientProfile
|
||||
}
|
||||
ambientScoreProfileOverview = ambientScoreProfileOverview[!is.na(ambientScoreProfileOverview$ctsScores),]
|
||||
ambientScoreProfileOverview[is.na(ambientScoreProfileOverview)] = 0
|
||||
|
||||
ambientScoreProfileOverview[,paste0("Threshold_", seq(from = startPos, to = stopPos, by = byLength))] = ambientScoreProfileOverview[,paste0("stillOverAmbient", as.character(seq(from = startPos, to = stopPos, by = byLength)))] / ambientScoreProfileOverview$belowCellexpression
|
||||
ambientScoreProfileOverview[is.na(ambientScoreProfileOverview)] = 0
|
||||
|
||||
ambientScoreProfileOverview[,paste0("contaminationChance", as.character(seq(from = startPos, to = stopPos, by = byLength)))] = ambientScoreProfileOverview[,paste0("stillOverAmbient", as.character(seq(from = startPos, to = stopPos, by = byLength)))] / ambientScoreProfileOverview$belowCellexpression
|
||||
|
||||
return(ambientScoreProfileOverview)
|
||||
}
|
||||
|
||||
|
||||
##############
|
||||
# Turns out that cellranger output looks different from WriteMM output and Read10X can't read the latter
|
||||
# TODO
|
||||
# Commented out until I find a fix
|
||||
|
||||
# write.corrected.matrix = function(correctedMatrix, folderLocation, correctedSignal){
|
||||
# dir.create(folderLocation)
|
||||
#
|
||||
# writeMM(obj = correctedMatrix, file=paste(folderLocation, "/matrix.mtx", sep = ""))
|
||||
#
|
||||
# # save genes and cells names
|
||||
# write(x = rownames(correctedMatrix), file = paste(folderLocation, "/genes.tsv", sep = ""))
|
||||
# write(x = colnames(correctedMatrix), file = paste(folderLocation, "/barcodes.tsv", sep = ""))
|
||||
#
|
||||
# correctedSignal = correctedSignal[correctedSignal > 0]
|
||||
# write.table(list(correctedSignal), file = paste(folderLocation, "/genesCorrectedFor.csv", sep = ""), row.names = TRUE, col.names = FALSE)
|
||||
#
|
||||
# }
|
||||
|
||||
# describe the number of genes identified in the background
|
||||
# and the number of genes failing the contamination chance threshold
|
||||
#
|
||||
describe.ambient.RNA.sequence = function(fullCellMatrix, start, stop, by, contaminationChanceCutoff){
|
||||
cutoffValue = seq(start, stop, by)
|
||||
genesInBackground = vector(mode = "numeric", length = length(seq(start, stop, by)))
|
||||
genesContaminating = vector(mode = "numeric", length = length(seq(start, stop, by)))
|
||||
nEmptyDroplets = vector(mode = "numeric", length = length(seq(start, stop, by)))
|
||||
|
||||
ambientDescriptions = data.frame(nEmptyDroplets, genesInBackground, genesContaminating, cutoffValue)
|
||||
rownames(ambientDescriptions) = seq(start, stop, by)
|
||||
for(emptyCutoff in seq(start, stop, by)){
|
||||
nEmpty = table((Matrix::colSums(fullCellMatrix) < emptyCutoff) &(Matrix::colSums(fullCellMatrix) > 0))[2]
|
||||
|
||||
occurences = Matrix::rowSums(fullCellMatrix[,Matrix::colSums(fullCellMatrix) < emptyCutoff] !=0)
|
||||
|
||||
#probability of a background read of a gene ending up in a cell
|
||||
probabiltyCellContaminationPerGene = occurences / nEmpty
|
||||
nFailingThreshold = sum(probabiltyCellContaminationPerGene > contaminationChanceCutoff)
|
||||
|
||||
nGenes = sum(occurences != 0)
|
||||
ambientDescriptions[as.character(emptyCutoff), c(1,2,3)] = c(nEmpty ,nGenes, nFailingThreshold)
|
||||
}
|
||||
return(ambientDescriptions)
|
||||
}
|
||||
|
||||
|
||||
plot.correction.effect.chance = function(correctionProfile){
|
||||
pheatmap(correctionProfile[correctionProfile[,3] > 0, colnames(correctionProfile)[grep("contaminationChance", colnames(correctionProfile))]],
|
||||
cluster_cols = FALSE,
|
||||
treeheight_row = 0,
|
||||
main = "Chance of affecting DE analyses")
|
||||
}
|
||||
|
||||
plot.correction.effect.removal = function(correctionProfile){
|
||||
pheatmap(correctionProfile[(correctionProfile[,3] > 0) ,colnames(correctionProfile)[grep("AmbientCorrection", colnames(correctionProfile))]],
|
||||
cluster_cols = FALSE, treeheight_row = 0,
|
||||
main = "Counts removed from each cell")
|
||||
}
|
||||
|
||||
|
||||
plot.ambient.profile = function(ambientProfile){
|
||||
|
||||
p1 = ggplot(ambientProfile, aes(x=cutoffValue, y=genesInBackground)) + geom_point()
|
||||
|
||||
|
||||
p2= ggplot(ambientProfile, aes(x=cutoffValue, y=genesContaminating)) + geom_point()
|
||||
|
||||
p3 = ggplot(ambientProfile, aes(x=cutoffValue, y=nEmptyDroplets)) + geom_point()
|
||||
|
||||
grid.arrange(p1, p2, p3, nrow = 3)
|
||||
|
||||
}
|
||||
|
||||
# I noticed that the number of genes removed tends to even out over time
|
||||
# Test whether the point where this first happens is a good empty cutoff point
|
||||
recommend.empty.cutoff = function(ambientProfile){
|
||||
highestNumberOfGenes = max(ambientProfile[,3])
|
||||
firstOccurence = match(highestNumberOfGenes, ambientProfile[,3])
|
||||
return(as.numeric(rownames(ambientProfile[firstOccurence,])))
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
139
README.md
139
README.md
@ -1,3 +1,140 @@
|
||||
# FastCAR
|
||||
|
||||
Repo for the FastCAR (Fast Correction of Ambient RNA) R package and maybe eventual python library
|
||||
FastCAR is an R package to remove ambient RNA from cells in droplet based single cell RNA sequencing data.
|
||||
|
||||
|
||||
### Installation
|
||||
|
||||
FastCAR can be installed from git with the following command.
|
||||
|
||||
```
|
||||
devtools::install_git("https://git.web.rug.nl/P278949/FastCAR")
|
||||
```
|
||||
|
||||
Running FastCAR is quite simple.
|
||||
First load the library and dependencies.
|
||||
|
||||
```
|
||||
library(Matrix)
|
||||
library(Seurat)
|
||||
library(qlcMatrix)
|
||||
library(pheatmap)
|
||||
library(ggplot2)
|
||||
library(gridExtra)
|
||||
```
|
||||
Specify the locations of the expression matrices
|
||||
|
||||
```
|
||||
cellExpressionFolder = c("Cellranger_output/sample1/filtered_feature_bc_matrix/")
|
||||
fullMatrixFolder = c("Cellranger_output/sample1/raw_feature_bc_matrix/")
|
||||
```
|
||||
Load both the cell matrix and the full matrix
|
||||
```
|
||||
cellMatrix = read.cell.matrix(cellExpressionFolder)
|
||||
fullMatrix = read.full.matrix(fullMatrixFolder)
|
||||
```
|
||||
The following functions give an idea of the effect that different settings have on the ambient RNA profile.
|
||||
These are optional as they do take a few minutes and the default settings work fine
|
||||
Plotting the number of empty droplets, the number of genes identified in the ambient RNA, and the number of genes that will be corrected for at different UMI cutoffs,
|
||||
|
||||
```
|
||||
ambProfile = describe.ambient.RNA.sequence(fullCellMatrix = fullMatrix,
|
||||
start = 10,
|
||||
stop = 500,
|
||||
by = 10,
|
||||
contaminationChanceCutoff = 0.05)
|
||||
|
||||
plot.ambient.profile(ambProfile)
|
||||
```
|
||||

|
||||
|
||||
|
||||
The actual effect on the chances of genes affecting your DE analyses can be determined and visualized with the following function
|
||||
|
||||
```
|
||||
|
||||
correctionEffectProfile = describe.correction.effect(allExpression, cellExpression, 50, 500, 10, 0.05)
|
||||
|
||||
plot.correction.effect.chance(correctionEffectProfile)
|
||||
|
||||
```
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
How many reads will be removed of these genes can be visualized from the same profile
|
||||
```
|
||||
|
||||
plot.correction.effect.removal(correctionEffectProfile)
|
||||
|
||||
```
|
||||
|
||||

|
||||
|
||||
|
||||
Set the empty droplet cutoff and the contamination chance cutoff
|
||||
|
||||
The empty droplet cutoff is the number of UMIs a droplet can contain at the most to be considered empty.
|
||||
100 works fine but we tested this method in only one tissue. For other tissues these settings may need to be changed.
|
||||
Increasing this number also increases the highest possible value of expression of a given gene.
|
||||
As the correction will remove this value from every cell it is adviced not to set this too high and thereby overcorrect the expression in lowly expressing cells.
|
||||
|
||||
The contamination chance cutoff is the allowed probability of a gene contaminating a cell.
|
||||
As we developed FastCAR specifically for differential expression analyses between groups we suggest setting this such that not enough cells could be contaminated to affect this.
|
||||
In a cluster of a thousand cells divided into two groups there would be 2-3 cells per group with ambient RNA contamination of any given gene.
|
||||
Such low cell numbers are disregarded for differential expression analyses.
|
||||
|
||||
There is an experimental function that gives a recommendation based on the ambient profiling results.
|
||||
This selects the first instance of the maximum number of genes being corrected for.
|
||||
I have no idea yet if this is actually a good idea.
|
||||
|
||||
```
|
||||
emptyDropletCutoff = recommend.empty.cutoff(ambProfile)
|
||||
```
|
||||
|
||||
|
||||
```
|
||||
emptyDropletCutoff = 150
|
||||
contaminationChanceCutoff = 0.005
|
||||
```
|
||||
|
||||
Determine the ambient RNA profile and remove the ambient RNA from each cell
|
||||
```
|
||||
ambientProfile = determine.background.to.remove(fullMatrix, cellMatrix, emptyDropletCutoff, contaminationChanceCutoff)
|
||||
cellMatrix = remove.background(cellMatrix, ambientProfile)
|
||||
```
|
||||
|
||||
This corrected matrix can be used to to make a Seurat object
|
||||
|
||||
```
|
||||
seuratObject = CreateSeuratObject(cellMatrix)
|
||||
```
|
||||
|
||||
|
||||
## Authors
|
||||
|
||||
* **Marijn Berg** - m.berg@umcg.nl
|
||||
|
||||
## License
|
||||
|
||||
This project is licensed under the GPL-3 License - see the [LICENSE.md](LICENSE.md) file for details
|
||||
|
||||
## Changelog
|
||||
|
||||
### v0.1
|
||||
First fully working version of the R package
|
||||
|
||||
### v0.2
|
||||
Fixed function to write the corrected matrix to file.
|
||||
Added readout of which genes will be corrected for and how many reads will be removed per cell
|
||||
Added some input checks to functions
|
||||
|
||||
### v0.2
|
||||
Fixed a bug that caused FastCAR to be incompatible with biobase libraries
|
||||
Added better profiling to determine the effect of different settings on the corrections
|
||||
Swapped base R plots for ggplot2 plots
|
||||
|
||||
|
||||
|
||||
|
12
man/hello.Rd
Normal file
12
man/hello.Rd
Normal file
@ -0,0 +1,12 @@
|
||||
\name{hello}
|
||||
\alias{hello}
|
||||
\title{Hello, World!}
|
||||
\usage{
|
||||
hello()
|
||||
}
|
||||
\description{
|
||||
Prints 'Hello, world!'.
|
||||
}
|
||||
\examples{
|
||||
hello()
|
||||
}
|
Reference in New Issue
Block a user