1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-28 01:04:56 +01:00
AMR/R/ab.R

262 lines
10 KiB
R
Raw Normal View History

2019-05-10 16:44:59 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# SOURCE #
# https://gitlab.com/msberends/AMR #
# #
# LICENCE #
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# This R package was created for academic research and was publicly #
# released in the hope that it will be useful, but it comes WITHOUT #
# ANY WARRANTY OR LIABILITY. #
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
# ==================================================================== #
#' Transform to antibiotic ID
#'
#' Use this function to determine the antibiotic code of one or more antibiotics. The data set \code{\link{antibiotics}} will be searched for abbreviations, official names and synonyms (brand names).
#' @param x character vector to determine to antibiotic ID
#' @rdname as.ab
#' @keywords atc
#' @inheritSection WHOCC WHOCC
#' @export
#' @importFrom dplyr %>% filter slice pull
2019-05-17 20:22:04 +02:00
#' @details All entries in the \code{\link{antibiotics}} data set have three different identifiers: a human readable EARS-Net code (column \code{ab}, used by ECDC and WHONET), an ATC code (column \code{atc}, used by WHO), and a CID code (column \code{cid}, Compound ID, used by PubChem). The data set contains more than 5,000 official brand names from many different countries, as found in PubChem.
2019-05-13 10:10:16 +02:00
#'
2019-05-17 20:22:04 +02:00
#' Use the \code{\link{ab_property}} functions to get properties based on the returned antibiotic ID, see Examples.
2019-05-10 16:44:59 +02:00
#'
#' In the ATC classification system, the active substances are classified in a hierarchy with five different levels. The system has fourteen main anatomical/pharmacological groups or 1st levels. Each ATC main group is divided into 2nd levels which could be either pharmacological or therapeutic groups. The 3rd and 4th levels are chemical, pharmacological or therapeutic subgroups and the 5th level is the chemical substance. The 2nd, 3rd and 4th levels are often used to identify pharmacological subgroups when that is considered more appropriate than therapeutic or chemical subgroups.
#' Source: \url{https://www.whocc.no/atc/structure_and_principles/}
#' @section Source:
#' World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology: \url{https://www.whocc.no/atc_ddd_index/}
#'
#' WHONET 2019 software: \url{http://www.whonet.org/software.html}
#'
#' European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: \url{http://ec.europa.eu/health/documents/community-register/html/atc.htm}
2019-05-13 10:10:16 +02:00
#' @return Character (vector) with class \code{"ab"}. Unknown values will return \code{NA}.
2019-05-10 16:44:59 +02:00
#' @seealso \code{\link{antibiotics}} for the dataframe that is being used to determine ATCs.
#' @inheritSection AMR Read more on our website!
#' @examples
#' # These examples all return "ERY", the ID of Erythromycin:
#' as.ab("J01FA01")
#' as.ab("J 01 FA 01")
#' as.ab("Erythromycin")
#' as.ab("eryt")
#' as.ab(" eryt 123")
#' as.ab("ERYT")
#' as.ab("ERY")
2019-05-16 21:20:00 +02:00
#' as.ab("eritromicine") # spelled wrong, yet works
2019-05-10 16:44:59 +02:00
#' as.ab("Erythrocin") # trade name
#' as.ab("Romycin") # trade name
#'
#' # Use ab_* functions to get a specific properties (see ?ab_property);
#' # they use as.ab() internally:
#' ab_name("J01FA01") # "Erythromycin"
#' ab_name("eryt") # "Erythromycin"
as.ab <- function(x) {
if (is.ab(x)) {
return(x)
}
2019-05-16 21:20:00 +02:00
if (all(toupper(x) %in% AMR::antibiotics$ab)) {
# valid AB code, but not yet right class
return(structure(.Data = toupper(x),
class = "ab"))
}
2019-05-10 16:44:59 +02:00
x_bak <- x
# remove suffices
2019-05-16 21:20:00 +02:00
x_bak_clean <- gsub("_(mic|rsi|disk|disc)$", "", x, ignore.case = TRUE)
2019-05-10 16:44:59 +02:00
# remove disk concentrations, like LVX_NM -> LVX
2019-05-13 10:10:16 +02:00
x_bak_clean <- gsub("_[A-Z]{2}[0-9_]{0,3}$", "", x_bak_clean, ignore.case = TRUE)
2019-05-10 16:44:59 +02:00
# clean rest of it
2019-05-16 21:20:00 +02:00
x_bak_clean <- gsub("[^A-Z0-9/-]", "", x_bak_clean, ignore.case = TRUE)
2019-05-10 16:44:59 +02:00
# keep only a-z when it's not an ATC code or only numbers
x_bak_clean[!x_bak_clean %like% "^([A-Z][0-9]{2}[A-Z]{2}[0-9]{2}|[0-9]+)$"] <- gsub("[^a-zA-Z]+",
"",
x_bak_clean[!x_bak_clean %like% "^([A-Z][0-9]{2}[A-Z]{2}[0-9]{2}|[0-9]+)$"])
x <- unique(x_bak_clean)
x_new <- rep(NA_character_, length(x))
x_unknown <- character(0)
for (i in 1:length(x)) {
if (is.na(x[i]) | is.null(x[i])) {
next
}
if (identical(x[i], "")) {
x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1])
next
}
# exact AB code
found <- AMR::antibiotics[which(AMR::antibiotics$ab == toupper(x[i])),]$ab
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
# exact ATC code
found <- AMR::antibiotics[which(AMR::antibiotics$atc == toupper(x[i])),]$ab
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
# exact CID code
found <- AMR::antibiotics[which(AMR::antibiotics$cid == x[i]),]$ab
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
# exact name
found <- AMR::antibiotics[which(toupper(AMR::antibiotics$name) == toupper(x[i])),]$ab
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
# exact synonym
synonym_found <- unlist(lapply(AMR::antibiotics$synonyms,
function(s) if (toupper(x[i]) %in% toupper(s)) {
TRUE
} else {
FALSE
}))
found <- AMR::antibiotics$ab[synonym_found == TRUE]
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
# exact abbreviation
abbr_found <- unlist(lapply(AMR::antibiotics$abbreviations,
function(a) if (toupper(x[i]) %in% toupper(a)) {
TRUE
} else {
FALSE
}))
found <- AMR::antibiotics$ab[abbr_found == TRUE]
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
# first >=4 characters of name
if (nchar(x[i]) >= 4) {
found <- AMR::antibiotics[which(toupper(AMR::antibiotics$name) %like% paste0("^", x[i])),]$ab
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
}
# allow characters that resemble others, but only continue when having more than 3 characters
if (nchar(x[i]) <= 3) {
x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1])
next
}
2019-05-16 21:20:00 +02:00
x_spelling <- tolower(x[i])
x_spelling <- gsub("[iy]+", "[iy]+", x_spelling)
x_spelling <- gsub("[sz]+", "[sz]+", x_spelling)
x_spelling <- gsub("(c|k|q|qu)+", "(c|k|q|qu)+", x_spelling)
x_spelling <- gsub("(ph|f|v)+", "(ph|f|v)+", x_spelling)
x_spelling <- gsub("(th|t)+", "(th|t)+", x_spelling)
x_spelling <- gsub("(x|ks)+", "(x|ks)+", x_spelling)
x_spelling <- gsub("a+", "a+", x_spelling)
x_spelling <- gsub("e+", "e+", x_spelling)
x_spelling <- gsub("o+", "o+", x_spelling)
# allow start with C/S/Z
x_spelling <- gsub("^(\\(c\\|k\\|q\\|qu\\)|\\[sz\\])", "(c|k|q|qu|s|z)", x_spelling)
x_spelling <- gsub("(c|k|q|qu)+[sz]", "(c|k|q|qu|s|x|z)", x_spelling, fixed = TRUE)
2019-05-10 16:44:59 +02:00
# allow any ending of -in/-ine and -im/-ime
2019-05-16 21:20:00 +02:00
x_spelling <- gsub("(\\[iy\\]\\+(n|m)|\\[iy\\]\\+(n|m)e\\+)$", "[iy]+(n|m)e*", x_spelling)
2019-05-10 16:44:59 +02:00
# allow any ending of -ol/-ole
2019-05-16 21:20:00 +02:00
x_spelling <- gsub("(o\\+l|o\\+le\\+)$", "o+le*", x_spelling)
# allow any ending of -on/-one
x_spelling <- gsub("(o\\+n|o\\+ne\\+)$", "o+ne*", x_spelling)
2019-05-10 16:44:59 +02:00
# try if name starts with it
found <- AMR::antibiotics[which(AMR::antibiotics$name %like% paste0("^", x_spelling)),]$ab
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
# and try if any synonym starts with it
synonym_found <- unlist(lapply(AMR::antibiotics$synonyms,
function(s) if (any(s %like% paste0("^", x_spelling))) {
TRUE
} else {
FALSE
}))
found <- AMR::antibiotics$ab[synonym_found == TRUE]
if (length(found) > 0) {
x_new[i] <- found[1L]
next
}
# not found
x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1])
}
if (length(x_unknown) > 0) {
warning("These values could not be coerced to a valid antibiotic ID: ",
paste('"', sort(unique(x_unknown)), '"', sep = "", collapse = ', '),
".",
call. = FALSE)
}
x_result <- data.frame(x = x_bak_clean, stringsAsFactors = FALSE) %>%
left_join(data.frame(x = x, x_new = x_new, stringsAsFactors = FALSE), by = "x") %>%
pull(x_new)
2019-05-16 21:20:00 +02:00
if (length(x_result) == 0) {
x_result <- NA_character_
}
2019-05-10 16:44:59 +02:00
structure(.Data = x_result,
class = "ab")
}
2019-05-16 21:20:00 +02:00
#' @rdname as.ab
2019-05-10 16:44:59 +02:00
#' @export
is.ab <- function(x) {
identical(class(x), "ab")
}
#' @exportMethod print.ab
#' @export
#' @noRd
print.ab <- function(x, ...) {
cat("Class 'ab'\n")
print.default(as.character(x), quote = FALSE)
}
#' @exportMethod as.data.frame.ab
#' @export
#' @noRd
as.data.frame.ab <- function (x, ...) {
# same as as.data.frame.character but with removed stringsAsFactors
nm <- paste(deparse(substitute(x), width.cutoff = 500L),
collapse = " ")
if (!"nm" %in% names(list(...))) {
as.data.frame.vector(x, ..., nm = nm)
} else {
as.data.frame.vector(x, ...)
}
}
#' @exportMethod pull.ab
#' @export
#' @importFrom dplyr pull
#' @noRd
pull.ab <- function(.data, ...) {
pull(as.data.frame(.data), ...)
}