1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-14 00:11:50 +01:00
AMR/vignettes/AMR_with_tidymodels.Rmd

192 lines
6.4 KiB
Plaintext
Raw Normal View History

2024-12-19 20:17:15 +01:00
---
title: "`AMR` with `tidymodels`"
output:
rmarkdown::html_vignette:
toc: true
toc_depth: 3
vignette: >
%\VignetteIndexEntry{`AMR` with `tidymodels`}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
editor_options:
chunk_output_type: console
---
```{r setup, include = FALSE, results = 'markup'}
knitr::opts_chunk$set(
warning = FALSE,
collapse = TRUE,
comment = "#>",
fig.width = 7.5,
fig.height = 5
)
```
Antimicrobial resistance (AMR) is a global health crisis, and understanding resistance patterns is crucial for managing effective treatments. The `AMR` R package provides robust tools for analysing AMR data, including convenient antibiotic selector functions like `aminoglycosides()` and `betalactams()`. In this post, we will explore how to use the `tidymodels` framework to predict resistance patterns in the `example_isolates` dataset.
By leveraging the power of `tidymodels` and the `AMR` package, well build a reproducible machine learning workflow to predict resistance to two important antibiotic classes: aminoglycosides and beta-lactams.
---
### **Objective**
Our goal is to build a predictive model using the `tidymodels` framework to determine resistance patterns based on microbial data. We will:
1. Preprocess data using the selector functions `aminoglycosides()` and `betalactams()`.
2. Define a logistic regression model for prediction.
3. Use a structured `tidymodels` workflow to preprocess, train, and evaluate the model.
---
### **Data Preparation**
We begin by loading the required libraries and preparing the `example_isolates` dataset from the `AMR` package.
```{r}
# Load required libraries
library(tidymodels) # For machine learning workflows, and data manipulation (dplyr, tidyr, ...)
library(AMR) # For AMR data analysis
# Load the example_isolates dataset
data("example_isolates") # Preloaded dataset with AMR results
# Select relevant columns for prediction
data <- example_isolates %>%
# select AB results dynamically
select(mo, aminoglycosides(), betalactams()) %>%
# replace NAs with NI (not-interpretable)
mutate(across(where(is.sir),
~replace_na(.x, "NI")),
# make factors of SIR columns
across(where(is.sir),
as.integer),
# get Gramstain of microorganisms
mo = as.factor(mo_gramstain(mo))) %>%
# drop NAs - the ones without a Gramstain (fungi, etc.)
drop_na() # %>%
# Cefepime is not reliable
#select(-FEP)
```
**Explanation:**
- `aminoglycosides()` and `betalactams()` dynamically select columns for antibiotics in these classes.
- `drop_na()` ensures the model receives complete cases for training.
---
### **Defining the Workflow**
We now define the `tidymodels` workflow, which consists of three steps: preprocessing, model specification, and fitting.
#### 1. Preprocessing with a Recipe
We create a recipe to preprocess the data for modelling. This includes:
- Encoding resistance results (`S`, `I`, `R`) as binary (resistant or not resistant).
- Converting microbial organism names (`mo`) into numerical features using one-hot encoding.
```{r}
# Define the recipe for data preprocessing
resistance_recipe <- recipe(mo ~ ., data = data) %>%
step_corr(c(aminoglycosides(), betalactams()), threshold = 0.9)
resistance_recipe
```
**Explanation:**
- `step_mutate()` transforms resistance results (`R`) into binary variables (TRUE/FALSE).
- `step_dummy()` converts categorical organism (`mo`) names into one-hot encoded numerical features, making them compatible with the model.
#### 2. Specifying the Model
We define a logistic regression model since resistance prediction is a binary classification task.
```{r}
# Specify a logistic regression model
logistic_model <- logistic_reg() %>%
set_engine("glm") # Use the Generalized Linear Model engine
logistic_model
```
**Explanation:**
- `logistic_reg()` sets up a logistic regression model.
- `set_engine("glm")` specifies the use of R's built-in GLM engine.
#### 3. Building the Workflow
We bundle the recipe and model together into a `workflow`, which organizes the entire modeling process.
```{r}
# Combine the recipe and model into a workflow
resistance_workflow <- workflow() %>%
add_recipe(resistance_recipe) %>% # Add the preprocessing recipe
add_model(logistic_model) # Add the logistic regression model
resistance_workflow
```
---
### **Training and Evaluating the Model**
To train the model, we split the data into training and testing sets. Then, we fit the workflow on the training set and evaluate its performance.
```{r}
# Split data into training and testing sets
set.seed(123) # For reproducibility
data_split <- initial_split(data, prop = 0.8) # 80% training, 20% testing
training_data <- training(data_split) # Training set
testing_data <- testing(data_split) # Testing set
# Fit the workflow to the training data
fitted_workflow <- resistance_workflow %>%
fit(training_data) # Train the model
fitted_workflow
```
**Explanation:**
- `initial_split()` splits the data into training and testing sets.
- `fit()` trains the workflow on the training set.
Next, we evaluate the model on the testing data.
```{r}
# Make predictions on the testing set
predictions <- fitted_workflow %>%
predict(testing_data) # Generate predictions
probabilities <- fitted_workflow %>%
predict(testing_data, type = "prob") # Generate probabilities
predictions <- predictions %>%
bind_cols(probabilities) %>%
bind_cols(testing_data) # Combine with true labels
predictions
# Evaluate model performance
metrics <- predictions %>%
metrics(truth = mo, estimate = .pred_class) # Calculate performance metrics
metrics
```
**Explanation:**
- `predict()` generates predictions on the testing set.
- `metrics()` computes evaluation metrics like accuracy and AUC.
It appears we can predict the Gram based on AMR results with a `r round(metrics$.estimate[1], 3)` accuracy. The ROC curve looks like:
```{r}
predictions %>%
roc_curve(mo, `.pred_Gram-negative`) %>%
autoplot()
```
---
### **Conclusion**
In this post, we demonstrated how to build a machine learning pipeline with the `tidymodels` framework and the `AMR` package. By combining selector functions like `aminoglycosides()` and `betalactams()` with `tidymodels`, we efficiently prepared data, trained a model, and evaluated its performance.
This workflow is extensible to other antibiotic classes and resistance patterns, empowering users to analyse AMR data systematically and reproducibly.
---