2018-08-22 00:02:26 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
# https://gitlab.com/msberends/AMR #
2018-08-22 00:02:26 +02:00
# #
# LICENCE #
2020-01-05 17:22:09 +01:00
# (c) 2018-2020 Berends MS, Luz CF et al. #
2018-08-22 00:02:26 +02:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
2020-01-05 17:22:09 +01:00
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2019-04-05 18:47:39 +02:00
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
2018-08-22 00:02:26 +02:00
# ==================================================================== #
2019-11-28 22:32:17 +01:00
#' Count available isolates
2018-08-22 00:02:26 +02:00
#'
2019-11-28 22:32:17 +01:00
#' @description These functions can be used to count resistant/susceptible microbial isolates. All functions support quasiquotation with pipes, can be used in [summarise()] and support grouped variables, see *Examples*.
2018-08-22 00:02:26 +02:00
#'
2019-11-28 22:32:17 +01:00
#' [count_resistant()] should be used to count resistant isolates, [count_susceptible()] should be used to count susceptible isolates.
2020-01-05 17:22:09 +01:00
#' @inheritSection lifecycle Stable lifecycle
2019-11-28 22:32:17 +01:00
#' @param ... one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with [as.rsi()] if needed.
2019-11-10 12:16:56 +01:00
#' @inheritParams proportion
2019-11-29 19:43:23 +01:00
#' @inheritSection as.rsi Interpretation of R and S/I
2019-11-28 22:32:17 +01:00
#' @details These functions are meant to count isolates. Use the [resistance()]/[susceptibility()] functions to calculate microbial resistance/susceptibility.
2019-11-10 12:16:56 +01:00
#'
2019-11-28 22:32:17 +01:00
#' The function [count_resistant()] is equal to the function [count_R()]. The function [count_susceptible()] is equal to the function [count_SI()].
2018-08-22 00:02:26 +02:00
#'
2019-11-28 22:32:17 +01:00
#' The function [n_rsi()] is an alias of [count_all()]. They can be used to count all available isolates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to [n_distinct()]. Their function is equal to `count_susceptible(...) + count_resistant(...)`.
2018-08-22 00:02:26 +02:00
#'
2019-11-28 22:32:17 +01:00
#' The function [count_df()] takes any variable from `data` that has an [`rsi`] class (created with [as.rsi()]) and counts the number of S's, I's and R's. The function [rsi_df()] works exactly like [count_df()], but adds the percentage of S, I and R.
2019-11-10 12:16:56 +01:00
#' @inheritSection proportion Combination therapy
2019-11-28 22:32:17 +01:00
#' @seealso [`proportion_*`][proportion] to calculate microbial resistance and susceptibility.
#' @return An [`integer`]
2018-08-22 00:02:26 +02:00
#' @rdname count
#' @name count
#' @export
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-08-22 00:02:26 +02:00
#' @examples
2019-08-27 16:45:42 +02:00
#' # example_isolates is a data set available in the AMR package.
#' ?example_isolates
2019-11-10 12:16:56 +01:00
#'
#' count_resistant(example_isolates$AMX) # counts "R"
#' count_susceptible(example_isolates$AMX) # counts "S" and "I"
#' count_all(example_isolates$AMX) # counts "S", "I" and "R"
2018-08-22 00:02:26 +02:00
#'
2019-11-10 12:16:56 +01:00
#' # be more specific
2019-08-27 16:45:42 +02:00
#' count_S(example_isolates$AMX)
#' count_SI(example_isolates$AMX)
2019-11-10 12:16:56 +01:00
#' count_I(example_isolates$AMX)
#' count_IR(example_isolates$AMX)
#' count_R(example_isolates$AMX)
2018-08-22 00:02:26 +02:00
#'
2018-10-12 16:35:18 +02:00
#' # Count all available isolates
2019-08-27 16:45:42 +02:00
#' count_all(example_isolates$AMX)
#' n_rsi(example_isolates$AMX)
2018-10-12 16:35:18 +02:00
#'
2019-11-10 12:16:56 +01:00
#' # n_rsi() is an alias of count_all().
#' # Since it counts all available isolates, you can
#' # calculate back to count e.g. susceptible isolates.
#' # These results are the same:
#' count_susceptible(example_isolates$AMX)
#' susceptibility(example_isolates$AMX) * n_rsi(example_isolates$AMX)
2018-08-22 00:02:26 +02:00
#'
#' library(dplyr)
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2018-08-22 00:02:26 +02:00
#' group_by(hospital_id) %>%
2019-05-10 16:44:59 +02:00
#' summarise(R = count_R(CIP),
#' I = count_I(CIP),
#' S = count_S(CIP),
#' n1 = count_all(CIP), # the actual total; sum of all three
#' n2 = n_rsi(CIP), # same - analogous to n_distinct
2019-03-26 14:24:03 +01:00
#' total = n()) # NOT the number of tested isolates!
2018-08-22 00:02:26 +02:00
#'
#' # Count co-resistance between amoxicillin/clav acid and gentamicin,
#' # so we can see that combination therapy does a lot more than mono therapy.
2019-11-10 12:16:56 +01:00
#' # Please mind that `susceptibility()` calculates percentages right away instead.
#' example_isolates %>% count_susceptible(AMC) # 1433
#' example_isolates %>% count_all(AMC) # 1879
2018-08-22 00:02:26 +02:00
#'
2019-11-10 12:16:56 +01:00
#' example_isolates %>% count_susceptible(GEN) # 1399
#' example_isolates %>% count_all(GEN) # 1855
2018-08-22 00:02:26 +02:00
#'
2019-11-10 12:16:56 +01:00
#' example_isolates %>% count_susceptible(AMC, GEN) # 1764
#' example_isolates %>% count_all(AMC, GEN) # 1936
#' # Get number of S+I vs. R immediately of selected columns
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2019-05-10 16:44:59 +02:00
#' select(AMX, CIP) %>%
2018-08-22 00:02:26 +02:00
#' count_df(translate = FALSE)
#'
#' # It also supports grouping variables
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2019-05-10 16:44:59 +02:00
#' select(hospital_id, AMX, CIP) %>%
2018-08-22 00:02:26 +02:00
#' group_by(hospital_id) %>%
#' count_df(translate = FALSE)
#'
2019-11-10 12:16:56 +01:00
count_resistant <- function ( ... , only_all_tested = FALSE ) {
rsi_calc ( ... ,
ab_result = " R" ,
only_all_tested = only_all_tested ,
only_count = TRUE )
}
#' @rdname count
#' @export
count_susceptible <- function ( ... , only_all_tested = FALSE ) {
rsi_calc ( ... ,
ab_result = c ( " S" , " I" ) ,
only_all_tested = only_all_tested ,
only_count = TRUE )
}
#' @rdname count
#' @export
2019-07-01 14:03:15 +02:00
count_R <- function ( ... , only_all_tested = FALSE ) {
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
2019-07-01 14:03:15 +02:00
ab_result = " R" ,
only_all_tested = only_all_tested ,
2018-08-22 00:02:26 +02:00
only_count = TRUE )
}
#' @rdname count
#' @export
2019-07-01 14:03:15 +02:00
count_IR <- function ( ... , only_all_tested = FALSE ) {
2019-11-10 12:16:56 +01:00
warning ( " Using 'count_IR' is discouraged; use 'count_resistant()' instead to not consider \"I\" being resistant." , call. = FALSE )
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
2019-07-01 14:03:15 +02:00
ab_result = c ( " I" , " R" ) ,
only_all_tested = only_all_tested ,
2018-08-22 00:02:26 +02:00
only_count = TRUE )
}
#' @rdname count
#' @export
2019-07-01 14:03:15 +02:00
count_I <- function ( ... , only_all_tested = FALSE ) {
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
2019-07-01 14:03:15 +02:00
ab_result = " I" ,
only_all_tested = only_all_tested ,
2018-08-22 00:02:26 +02:00
only_count = TRUE )
}
#' @rdname count
#' @export
2019-07-01 14:03:15 +02:00
count_SI <- function ( ... , only_all_tested = FALSE ) {
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
2019-07-01 14:03:15 +02:00
ab_result = c ( " S" , " I" ) ,
only_all_tested = only_all_tested ,
2018-08-22 00:02:26 +02:00
only_count = TRUE )
}
#' @rdname count
#' @export
2019-07-01 14:03:15 +02:00
count_S <- function ( ... , only_all_tested = FALSE ) {
2019-11-10 12:16:56 +01:00
warning ( " Using 'count_S' is discouraged; use 'count_susceptible()' instead to also consider \"I\" being susceptible." , call. = FALSE )
2018-08-23 00:40:36 +02:00
rsi_calc ( ... ,
2019-07-01 14:03:15 +02:00
ab_result = " S" ,
only_all_tested = only_all_tested ,
2018-08-22 00:02:26 +02:00
only_count = TRUE )
}
2018-10-12 16:35:18 +02:00
#' @rdname count
#' @export
2019-07-01 14:03:15 +02:00
count_all <- function ( ... , only_all_tested = FALSE ) {
rsi_calc ( ... ,
ab_result = c ( " S" , " I" , " R" ) ,
only_all_tested = only_all_tested ,
only_count = TRUE )
2018-10-12 16:35:18 +02:00
}
#' @rdname count
#' @export
2019-10-11 17:21:02 +02:00
n_rsi <- count_all
2018-10-12 16:35:18 +02:00
2018-08-22 00:02:26 +02:00
#' @rdname count
#' @export
count_df <- function ( data ,
2019-05-10 16:44:59 +02:00
translate_ab = " name" ,
language = get_locale ( ) ,
2019-05-13 10:10:16 +02:00
combine_SI = TRUE ,
2018-10-16 09:59:31 +02:00
combine_IR = FALSE ) {
2018-08-22 00:02:26 +02:00
2019-05-13 10:10:16 +02:00
rsi_calc_df ( type = " count" ,
data = data ,
translate_ab = translate_ab ,
language = language ,
combine_SI = combine_SI ,
combine_IR = combine_IR ,
combine_SI_missing = missing ( combine_SI ) )
2018-08-22 00:02:26 +02:00
}