1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-26 18:46:13 +01:00
AMR/R/aa_helper_functions_dplyr.R

776 lines
23 KiB
R
Raw Normal View History

2020-05-16 13:05:47 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# SOURCE #
2020-07-08 14:48:06 +02:00
# https://github.com/msberends/AMR #
2020-05-16 13:05:47 +02:00
# #
# LICENCE #
# (c) 2018-2020 Berends MS, Luz CF et al. #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2020-07-08 14:48:06 +02:00
# Visit our website for more info: https://msberends.github.io/AMR. #
2020-05-16 13:05:47 +02:00
# ==================================================================== #
# ------------------------------------------------
# THIS FILE WAS CREATED AUTOMATICALLY!
# Source file: data-raw/reproduction_of_poorman.R
# ------------------------------------------------
# Poorman: a package to replace all dplyr functions with base R so we can lose dependency on dplyr.
# These functions were downloaded from https://github.com/nathaneastwood/poorman,
# from this commit: https://github.com/nathaneastwood/poorman/tree/7d76d77f8f7bc663bf30fb5a161abb49801afa17
#
# All code below was released under MIT license, that permits 'free of charge, to any person obtaining a
# copy of the software and associated documentation files (the "Software"), to deal in the Software
# without restriction, including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
# is furnished to do so', given that a copyright notice is given in the software.
#
# Copyright notice as found on https://github.com/nathaneastwood/poorman/blob/master/LICENSE on 2 May 2020:
# YEAR: 2020
# COPYRIGHT HOLDER: Nathan Eastwood
arrange <- function(.data, ...) {
check_is_dataframe(.data)
if ("grouped_data" %in% class(.data)) {
arrange.grouped_data(.data, ...)
} else {
arrange.default(.data, ...)
}
}
arrange.default <- function(.data, ...) {
rows <- eval.parent(substitute(with(.data, order(...))))
.data[rows, , drop = FALSE]
}
arrange.grouped_data <- function(.data, ...) {
apply_grouped_function(.data, "arrange", ...)
}
between <- function(x, left, right) {
if (!is.null(attr(x, "class")) && !inherits(x, c("Date", "POSIXct"))) {
warning("`between()` called on numeric vector with S3 class")
}
if (!is.double(x)) x <- as.numeric(x)
x >= as.numeric(left) & x <= as.numeric(right)
}
count <- function(x, ..., wt = NULL, sort = FALSE, name = NULL) {
groups <- get_groups(x)
if (!missing(...)) x <- group_by(x, ..., .add = TRUE)
wt <- deparse_var(wt)
res <- do.call(tally, list(x, wt, sort, name))
if (length(groups) > 0L) res <- do.call(group_by, list(res, as.name(groups)))
res
}
tally <- function(x, wt = NULL, sort = FALSE, name = NULL) {
name <- check_name(x, name)
wt <- deparse_var(wt)
res <- do.call(summarise, set_names(list(x, as.name(tally_n(x, wt))), c(".data", name)))
res <- ungroup(res)
if (isTRUE(sort)) res <- do.call(arrange, list(res, call("desc", as.name(name))))
rownames(res) <- NULL
res
}
add_count <- function(x, ..., wt = NULL, sort = FALSE, name = NULL) {
name <- check_name(x, name)
row_names <- rownames(x)
wt <- deparse_var(wt)
if (!missing(...)) x <- group_by(x, ..., .add = TRUE)
res <- do.call(add_tally, list(x, wt, sort, name))
res[row_names, ]
}
add_tally <- function(x, wt = NULL, sort = FALSE, name = NULL) {
wt <- deparse_var(wt)
n <- tally_n(x, wt)
name <- check_name(x, name)
res <- do.call(mutate, set_names(list(x, as.name(n)), c(".data", name)))
if (isTRUE(sort)) {
do.call(arrange, list(res, call("desc", as.name(name))))
} else {
res
}
}
tally_n <- function(x, wt) {
if (is.null(wt) && "n" %in% colnames(x)) {
message("Using `n` as weighting variable")
wt <- "n"
}
context$.data <- x
on.exit(rm(list = ".data", envir = context))
if (is.null(wt)) {
"n()"
} else {
paste0("sum(", wt, ", na.rm = TRUE)")
}
}
check_name <- function(df, name) {
if (is.null(name)) {
if ("n" %in% colnames(df)) {
stop(
"Column 'n' is already present in output\n",
"* Use `name = \"new_name\"` to pick a new name"
)
}
return("n")
}
if (!is.character(name) || length(name) != 1) {
stop("`name` must be a single string")
}
name
}
desc <- function(x) -xtfrm(x)
select_env <- new.env()
peek_vars <- function() {
get(".col_names", envir = select_env)
}
context <- new.env()
n <- function() {
do.call(nrow, list(quote(.data)), envir = context)
}
filter <- function(.data, ...) {
check_is_dataframe(.data)
if ("grouped_data" %in% class(.data)) {
filter.grouped_data(.data, ...)
} else {
filter.default(.data, ...)
}
}
filter.default <- function(.data, ...) {
conditions <- paste(deparse_dots(...), collapse = " & ")
context$.data <- .data
on.exit(rm(.data, envir = context))
.data[do.call(with, list(.data, str2lang(unname(conditions)))), ]
}
filter.grouped_data <- function(.data, ...) {
rows <- rownames(.data)
res <- apply_grouped_function(.data, "filter", ...)
res[rows[rows %in% rownames(res)], ]
}
group_by <- function(.data, ..., .add = FALSE) {
check_is_dataframe(.data)
pre_groups <- get_groups(.data)
groups <- deparse_dots(...)
if (isTRUE(.add)) groups <- unique(c(pre_groups, groups))
unknown <- !(groups %in% colnames(.data))
if (any(unknown)) stop("Invalid groups: ", groups[unknown])
structure(.data, class = c("grouped_data", class(.data)), groups = groups)
}
ungroup <- function(x, ...) {
check_is_dataframe(x)
rm_groups <- deparse_dots(...)
groups <- attr(x, "groups")
if (length(rm_groups) == 0L) rm_groups <- groups
attr(x, "groups") <- groups[!(groups %in% rm_groups)]
if (length(attr(x, "groups")) == 0L) {
attr(x, "groups") <- NULL
class(x) <- class(x)[!(class(x) %in% "grouped_data")]
}
x
}
get_groups <- function(x) {
attr(x, "groups", exact = TRUE)
}
has_groups <- function(x) {
groups <- get_groups(x)
if (is.null(groups)) FALSE else TRUE
}
set_groups <- function(x, groups) {
attr(x, "groups") <- groups
x
}
apply_grouped_function <- function(.data, fn, ...) {
groups <- get_groups(.data)
grouped <- split_into_groups(.data, groups)
res <- do.call(rbind, unname(lapply(grouped, fn, ...)))
if (any(groups %in% colnames(res))) {
class(res) <- c("grouped_data", class(res))
attr(res, "groups") <- groups[groups %in% colnames(res)]
}
res
}
split_into_groups <- function(.data, groups) {
class(.data) <- "data.frame"
group_factors <- lapply(groups, function(x, .data) as.factor(.data[, x]), .data)
res <- split(x = .data, f = group_factors)
res
}
print.grouped_data <- function(x, ..., digits = NULL, quote = FALSE, right = TRUE, row.names = TRUE, max = NULL) {
class(x) <- "data.frame"
print(x, ..., digits = digits, quote = quote, right = right, row.names = row.names, max = max)
cat("\nGroups: ", paste(attr(x, "groups", exact = TRUE), collapse = ", "), "\n\n")
}
if_else <- function(condition, true, false, missing = NULL) {
if (!is.logical(condition)) stop("`condition` must be a logical vector.")
cls_true <- class(true)
cls_false <- class(false)
cls_missing <- class(missing)
if (!identical(cls_true, cls_false)) {
stop("The class of `true` <", class(true), "> is not the same as the class of `false` <", class(false), ">")
}
if (!is.null(missing) && !identical(cls_true, cls_missing)) {
stop("`missing` must be a ", cls_true, " vector, not a ", cls_missing, " vector.")
}
res <- ifelse(condition, true, false)
if (!is.null(missing)) res[is.na(res)] <- missing
attributes(res) <- attributes(true)
res
}
inner_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) {
join_worker(x = x, y = y, by = by, suffix = suffix, sort = FALSE)
}
left_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) {
join_worker(x = x, y = y, by = by, suffix = suffix, all.x = TRUE)
}
right_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) {
join_worker(x = x, y = y, by = by, suffix = suffix, all.y = TRUE)
}
full_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) {
join_worker(x = x, y = y, by = by, suffix = suffix, all = TRUE)
}
join_worker <- function(x, y, by = NULL, suffix = c(".x", ".y"), ...) {
x[, ".join_id"] <- seq_len(nrow(x))
if (is.null(by)) {
by <- intersect(names(x), names(y))
join_message(by)
merged <- merge(x = x, y = y, by = by, suffixes = suffix, ...)[, union(names(x), names(y))]
} else if (is.null(names(by))) {
merged <- merge(x = x, y = y, by = by, suffixes = suffix, ...)
} else {
merged <- merge(x = x, y = y, by.x = names(by), by.y = by, suffixes = suffix, ...)
}
merged <- merged[order(merged[, ".join_id"]), colnames(merged) != ".join_id"]
rownames(merged) <- NULL
merged
}
join_message <- function(by) {
if (length(by) > 1L) {
message("Joining, by = c(\"", paste0(by, collapse = "\", \""), "\")\n", sep = "")
} else {
message("Joining, by = \"", by, "\"\n", sep = "")
}
}
anti_join <- function(x, y, by = NULL) {
filter_join_worker(x, y, by, type = "anti")
}
semi_join <- function(x, y, by = NULL) {
filter_join_worker(x, y, by, type = "semi")
}
# filter_join_worker <- function(x, y, by = NULL, type = c("anti", "semi")) {
# type <- match.arg(type, choices = c("anti", "semi"), several.ok = FALSE)
# if (is.null(by)) {
# by <- intersect(names(x), names(y))
# join_message(by)
# }
# rows <- interaction(x[, by]) %in% interaction(y[, by])
# if (type == "anti") rows <- !rows
# res <- x[rows, ]
# rownames(res) <- NULL
# res
# }
lag <- function (x, n = 1L, default = NA) {
if (inherits(x, "ts")) stop("`x` must be a vector, not a `ts` object, do you want `stats::lag()`?")
if (length(n) != 1L || !is.numeric(n) || n < 0L) stop("`n` must be a nonnegative integer scalar")
if (n == 0L) return(x)
tryCatch(
storage.mode(default) <- typeof(x),
warning = function(w) {
stop("Cannot convert `default` <", typeof(default), "> to `x` <", typeof(x), ">")
}
)
xlen <- length(x)
n <- pmin(n, xlen)
res <- c(rep(default, n), x[seq_len(xlen - n)])
attributes(res) <- attributes(x)
res
}
lead <- function (x, n = 1L, default = NA) {
if (length(n) != 1L || !is.numeric(n) || n < 0L) stop("n must be a nonnegative integer scalar")
if (n == 0L) return(x)
tryCatch(
storage.mode(default) <- typeof(x),
warning = function(w) {
stop("Cannot convert `default` <", typeof(default), "> to `x` <", typeof(x), ">")
}
)
xlen <- length(x)
n <- pmin(n, xlen)
res <- c(x[-seq_len(n)], rep(default, n))
attributes(res) <- attributes(x)
res
}
mutate <- function(.data, ...) {
check_is_dataframe(.data)
if ("grouped_data" %in% class(.data)) {
mutate.grouped_data(.data, ...)
} else {
mutate.default(.data, ...)
}
}
mutate.default <- function(.data, ...) {
conditions <- deparse_dots(...)
cond_names <- names(conditions)
unnamed <- which(nchar(cond_names) == 0L)
if (is.null(cond_names)) {
names(conditions) <- conditions
} else if (length(unnamed) > 0L) {
names(conditions)[unnamed] <- conditions[unnamed]
}
not_matched <- names(conditions)[!names(conditions) %in% names(.data)]
.data[, not_matched] <- NA
context$.data <- .data
on.exit(rm(.data, envir = context))
for (i in seq_along(conditions)) {
.data[, names(conditions)[i]] <- do.call(with, list(.data, str2lang(unname(conditions)[i])))
}
.data
}
mutate.grouped_data <- function(.data, ...) {
rows <- rownames(.data)
res <- apply_grouped_function(.data, "mutate", ...)
res[rows, ]
}
n_distinct <- function(..., na.rm = FALSE) {
res <- c(...)
if (is.list(res)) return(nrow(unique(as.data.frame(res, stringsAsFactors = FALSE))))
if (isTRUE(na.rm)) res <- res[!is.na(res)]
length(unique(res))
}
`%>%` <- function(lhs, rhs) {
lhs <- substitute(lhs)
rhs <- substitute(rhs)
eval(as.call(c(rhs[[1L]], lhs, as.list(rhs[-1L]))), envir = parent.frame())
}
pull <- function(.data, var = -1) {
var_deparse <- deparse_var(var)
col_names <- colnames(.data)
if (!(var_deparse %in% col_names) & grepl("^[[:digit:]]+L|[[:digit:]]", var_deparse)) {
var <- as.integer(gsub("L", "", var_deparse))
var <- if_else(var < 1L, rev(col_names)[abs(var)], col_names[var])
} else if (var_deparse %in% col_names) {
var <- var_deparse
}
.data[, var]
}
relocate <- function(.data, ..., .before = NULL, .after = NULL) {
check_is_dataframe(.data)
data_names <- colnames(.data)
col_pos <- select_positions(.data, ...)
.before <- deparse_var(.before)
.after <- deparse_var(.after)
has_before <- !is.null(.before)
has_after <- !is.null(.after)
if (has_before && has_after) {
stop("You must supply only one of `.before` and `.after`")
} else if (has_before) {
where <- min(match(.before, data_names))
col_pos <- c(setdiff(col_pos, where), where)
} else if (has_after) {
where <- max(match(.after, data_names))
col_pos <- c(where, setdiff(col_pos, where))
} else {
where <- 1L
col_pos <- union(col_pos, where)
}
lhs <- setdiff(seq(1L, where - 1L), col_pos)
rhs <- setdiff(seq(where + 1L, ncol(.data)), col_pos)
col_pos <- unique(c(lhs, col_pos, rhs))
col_pos <- col_pos[col_pos <= length(data_names)]
res <- .data[col_pos]
if (has_groups(.data)) res <- set_groups(res, get_groups(.data))
res
}
rename <- function(.data, ...) {
check_is_dataframe(.data)
new_names <- names(deparse_dots(...))
if (length(new_names) == 0L) {
warning("You didn't give any new names")
return(.data)
}
col_pos <- select_positions(.data, ...)
old_names <- colnames(.data)[col_pos]
new_names_zero <- nchar(new_names) == 0L
if (any(new_names_zero)) {
warning("You didn't provide new names for: ", paste0("`", old_names[new_names_zero], collapse = ", "), "`")
new_names[new_names_zero] <- old_names[new_names_zero]
}
colnames(.data)[col_pos] <- new_names
.data
}
rownames_to_column <- function(.data, var = "rowname") {
check_is_dataframe(.data)
col_names <- colnames(.data)
if (var %in% col_names) stop("Column `", var, "` already exists in `.data`")
.data[, var] <- rownames(.data)
rownames(.data) <- NULL
.data[, c(var, setdiff(col_names, var))]
}
select <- function(.data, ...) {
map <- names(deparse_dots(...))
col_pos <- select_positions(.data, ..., group_pos = TRUE)
res <- .data[, col_pos, drop = FALSE]
to_map <- nchar(map) > 0L
colnames(res)[to_map] <- map[to_map]
if (has_groups(.data)) res <- set_groups(res, get_groups(.data))
res
}
starts_with <- function(match, ignore.case = TRUE, vars = peek_vars()) {
grep(pattern = paste0("^", paste0(match, collapse = "|^")), x = vars, ignore.case = ignore.case)
}
ends_with <- function(match, ignore.case = TRUE, vars = peek_vars()) {
grep(pattern = paste0(paste0(match, collapse = "$|"), "$"), x = vars, ignore.case = ignore.case)
}
contains <- function(match, ignore.case = TRUE, vars = peek_vars()) {
matches <- lapply(
match,
function(x) {
if (isTRUE(ignore.case)) {
match_u <- toupper(x)
match_l <- tolower(x)
pos_u <- grep(pattern = match_u, x = toupper(vars), fixed = TRUE)
pos_l <- grep(pattern = match_l, x = tolower(vars), fixed = TRUE)
unique(c(pos_l, pos_u))
} else {
grep(pattern = x, x = vars, fixed = TRUE)
}
}
)
unique(matches)
}
matches <- function(match, ignore.case = TRUE, perl = FALSE, vars = peek_vars()) {
grep(pattern = match, x = vars, ignore.case = ignore.case, perl = perl)
}
num_range <- function(prefix, range, width = NULL, vars = peek_vars()) {
if (!is.null(width)) {
range <- sprintf(paste0("%0", width, "d"), range)
}
find <- paste0(prefix, range)
if (any(duplicated(vars))) {
stop("Column names must be unique")
} else {
x <- match(find, vars)
x[!is.na(x)]
}
}
all_of <- function(x, vars = peek_vars()) {
x_ <- !x %in% vars
if (any(x_)) {
which_x_ <- which(x_)
if (length(which_x_) == 1L) {
stop("The column ", x[which_x_], " does not exist.")
} else {
stop("The columns ", paste(x[which_x_], collapse = ", "), " do not exist.")
}
} else {
which(vars %in% x)
}
}
any_of <- function(x, vars = peek_vars()) {
which(vars %in% x)
}
everything <- function(vars = peek_vars()) {
seq_along(vars)
}
last_col <- function(offset = 0L, vars = peek_vars()) {
if (!is_wholenumber(offset)) stop("`offset` must be an integer")
n <- length(vars)
if (offset && n <= offset) {
stop("`offset` must be smaller than the number of `vars`")
} else if (n == 0) {
stop("Can't select last column when `vars` is empty")
} else {
n - offset
}
}
select_positions <- function(.data, ..., group_pos = FALSE) {
cols <- eval(substitute(alist(...)))
data_names <- colnames(.data)
select_env$.col_names <- data_names
on.exit(rm(list = ".col_names", envir = select_env))
exec_env <- parent.frame(2L)
pos <- unlist(lapply(cols, eval_expr, exec_env = exec_env))
if (isTRUE(group_pos)) {
groups <- get_groups(.data)
missing_groups <- !(groups %in% cols)
if (any(missing_groups)) {
message("Adding missing grouping variables: `", paste(groups[missing_groups], collapse = "`, `"), "`")
pos <- c(match(groups[missing_groups], data_names), pos)
}
}
unique(pos)
}
eval_expr <- function(x, exec_env) {
type <- typeof(x)
switch(
type,
"integer" = x,
"double" = as.integer(x),
"character" = select_char(x),
"symbol" = select_symbol(x, exec_env = exec_env),
"language" = eval_call(x),
stop("Expressions of type <", typeof(x), "> cannot be evaluated for use when subsetting.")
)
}
select_char <- function(expr) {
pos <- match(expr, select_env$.col_names)
if (is.na(pos)) stop("Column `", expr, "` does not exist")
pos
}
select_symbol <- function(expr, exec_env) {
res <- try(select_char(as.character(expr)), silent = TRUE)
if (inherits(res, "try-error")) {
res <- tryCatch(
select_char(eval(expr, envir = exec_env)),
error = function(e) stop("Column ", expr, " does not exist.")
)
}
res
}
eval_call <- function(x) {
type <- as.character(x[[1]])
switch(
type,
`:` = select_seq(x),
`!` = select_negate(x),
`-` = select_minus(x),
`c` = select_c(x),
`(` = select_bracket(x),
select_context(x)
)
}
select_seq <- function(expr) {
x <- eval_expr(expr[[2]])
y <- eval_expr(expr[[3]])
x:y
}
select_negate <- function(expr) {
x <- if (is_negated_colon(expr)) {
expr <- call(":", expr[[2]][[2]], expr[[2]][[3]][[2]])
eval_expr(expr)
} else {
eval_expr(expr[[2]])
}
x * -1L
}
is_negated_colon <- function(expr) {
expr[[1]] == "!" && length(expr[[2]]) > 1L && expr[[2]][[1]] == ":" && expr[[2]][[3]][[1]] == "!"
}
select_minus <- function(expr) {
x <- eval_expr(expr[[2]])
x * -1L
}
select_c <- function(expr) {
lst_expr <- as.list(expr)
lst_expr[[1]] <- NULL
unlist(lapply(lst_expr, eval_expr))
}
select_bracket <- function(expr) {
eval_expr(expr[[2]])
}
select_context <- function(expr) {
eval(expr, envir = context$.data)
}
slice <- function(.data, ...) {
check_is_dataframe(.data)
if ("grouped_data" %in% class(.data)) {
slice.grouped_data(.data, ...)
} else {
slice.default(.data, ...)
}
}
slice.default <- function(.data, ...) {
rows <- c(...)
stopifnot(is.numeric(rows) | is.integer(rows))
if (all(rows > 0L)) rows <- rows[rows <= nrow(.data)]
.data[rows, ]
}
slice.grouped_data <- function(.data, ...) {
apply_grouped_function(.data, "slice", ...)
}
summarise <- function(.data, ...) {
check_is_dataframe(.data)
if ("grouped_data" %in% class(.data)) {
summarise.grouped_data(.data, ...)
} else {
summarise.default(.data, ...)
}
}
summarise.default <- function(.data, ...) {
fns <- vapply(substitute(...()), deparse, NA_character_)
context$.data <- .data
on.exit(rm(.data, envir = context))
if (has_groups(.data)) {
group <- unique(.data[, get_groups(.data), drop = FALSE])
if (nrow(group) == 0L) return(NULL)
}
res <- lapply(fns, function(x) do.call(with, list(.data, str2lang(x))))
res <- as.data.frame(res)
fn_names <- names(fns)
colnames(res) <- if (is.null(fn_names)) fns else fn_names
if (has_groups(.data)) res <- cbind(group, res)
res
}
summarise.grouped_data <- function(.data, ...) {
groups <- get_groups(.data)
res <- apply_grouped_function(.data, "summarise", ...)
res <- res[do.call(order, lapply(groups, function(x) res[, x])), ]
rownames(res) <- NULL
res
}
summarize <- summarise
summarize.default <- summarise.default
summarize.grouped_data <- summarise.grouped_data
transmute <- function(.data, ...) {
check_is_dataframe(.data)
if ("grouped_data" %in% class(.data)) {
transmute.grouped_data(.data, ...)
} else {
transmute.default(.data, ...)
}
}
transmute.default <- function(.data, ...) {
conditions <- deparse_dots(...)
mutated <- mutate(.data, ...)
mutated[, names(conditions), drop = FALSE]
}
transmute.grouped_data <- function(.data, ...) {
rows <- rownames(.data)
res <- apply_grouped_function(.data, "transmute", ...)
res[rows, ]
}
deparse_dots <- function(...) {
vapply(substitute(...()), deparse, NA_character_)
}
deparse_var <- function(var) {
sub_var <- eval(substitute(substitute(var)), parent.frame())
if (is.symbol(sub_var)) var <- as.character(sub_var)
var
}
check_is_dataframe <- function(.data) {
parent_fn <- all.names(sys.call(-1L), max.names = 1L)
if (!is.data.frame(.data)) stop(parent_fn, " must be given a data.frame")
invisible()
}
is_wholenumber <- function(x) {
x %% 1L == 0L
}
set_names <- function(object = nm, nm) {
names(object) <- nm
object
}
cume_dist <- function(x) {
rank(x, ties.method = "max", na.last = "keep") / sum(!is.na(x))
}
dense_rank <- function(x) {
match(x, sort(unique(x)))
}
min_rank <- function(x) {
rank(x, ties.method = "min", na.last = "keep")
}
ntile <- function (x = row_number(), n) {
if (!missing(x)) x <- row_number(x)
len <- length(x) - sum(is.na(x))
n <- as.integer(floor(n))
if (len == 0L) {
rep(NA_integer_, length(x))
} else {
n_larger <- as.integer(len %% n)
n_smaller <- as.integer(n - n_larger)
size <- len / n
larger_size <- as.integer(ceiling(size))
smaller_size <- as.integer(floor(size))
larger_threshold <- larger_size * n_larger
bins <- if_else(
x <= larger_threshold,
(x + (larger_size - 1L)) / larger_size,
(x + (-larger_threshold + smaller_size - 1L)) / smaller_size + n_larger
)
as.integer(floor(bins))
}
}
percent_rank <- function(x) {
(min_rank(x) - 1) / (sum(!is.na(x)) - 1)
}
row_number <- function(x) {
if (missing(x)) seq_len(n()) else rank(x, ties.method = "first", na.last = "keep")
}