2018-11-05 15:30:49 +01:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
# https://gitlab.com/msberends/AMR #
2018-11-05 15:30:49 +01:00
# #
# LICENCE #
2019-01-02 23:24:07 +01:00
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
2018-11-05 15:30:49 +01:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# This R package was created for academic research and was publicly #
# released in the hope that it will be useful, but it comes WITHOUT #
# ANY WARRANTY OR LIABILITY. #
2019-04-05 18:47:39 +02:00
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
2018-11-05 15:30:49 +01:00
# ==================================================================== #
#' Read data from 4D database
#'
2018-12-16 22:45:12 +01:00
#' This function is only useful for the MMB department of the UMCG. Use this function to \strong{import data by just defining the \code{file} parameter}. It will automatically transform birth dates and calculate patients age, translate the column names to English, transform the MO codes with \code{\link{as.mo}} and transform all antimicrobial columns with \code{\link{as.rsi}}.
2018-11-05 15:30:49 +01:00
#' @inheritParams utils::read.table
2018-11-15 12:42:35 +01:00
#' @param info a logical to indicate whether info about the import should be printed, defaults to \code{TRUE} in interactive sessions
#' @details Column names will be transformed, but the original column names are set as a "label" attribute and can be seen in e.g. RStudio Viewer.
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-11-05 15:30:49 +01:00
#' @export
2018-11-15 12:42:35 +01:00
read.4D <- function ( file ,
info = interactive ( ) ,
2018-11-05 15:30:49 +01:00
header = TRUE ,
2018-11-15 12:42:35 +01:00
row.names = NULL ,
2018-11-05 15:30:49 +01:00
sep = " \t" ,
quote = " \"'" ,
dec = " ," ,
na.strings = c ( " NA" , " " , " ." ) ,
skip = 2 ,
check.names = TRUE ,
strip.white = TRUE ,
fill = TRUE ,
blank.lines.skip = TRUE ,
stringsAsFactors = FALSE ,
fileEncoding = " UTF-8" ,
encoding = " UTF-8" ) {
2018-11-15 12:42:35 +01:00
if ( info == TRUE ) {
2018-11-19 13:00:22 +01:00
message ( " Importing " , file , " ... " , appendLF = FALSE )
2018-11-15 12:42:35 +01:00
}
2018-11-05 15:30:49 +01:00
data_4D <- utils :: read.table ( file = file ,
2018-11-15 12:42:35 +01:00
row.names = row.names ,
2018-11-05 15:30:49 +01:00
header = header ,
sep = sep ,
quote = quote ,
dec = dec ,
na.strings = na.strings ,
skip = skip ,
check.names = check.names ,
strip.white = strip.white ,
fill = fill ,
blank.lines.skip = blank.lines.skip ,
stringsAsFactors = stringsAsFactors ,
fileEncoding = fileEncoding ,
encoding = encoding )
2018-12-16 22:45:12 +01:00
# helper function for dates
2018-11-05 15:30:49 +01:00
to_date_4D <- function ( x ) {
date_regular <- as.Date ( x , format = " %d-%m-%y" )
posixlt <- as.POSIXlt ( date_regular )
# born after today will be born 100 years ago
# based on https://stackoverflow.com/a/3312971/4575331
2018-11-15 12:42:35 +01:00
posixlt [date_regular > Sys.Date ( ) & ! is.na ( posixlt ) ] $ year <- posixlt [date_regular > Sys.Date ( ) & ! is.na ( posixlt ) ] $ year - 100
2018-11-05 15:30:49 +01:00
as.Date ( posixlt )
}
2018-11-15 12:42:35 +01:00
if ( info == TRUE ) {
message ( " OK\nTransforming column names... " , appendLF = FALSE )
}
if ( " row.names" %in% colnames ( data_4D ) & all ( is.na ( data_4D [ , ncol ( data_4D ) ] ) ) ) {
# remove first column name "row.names" and remove last empty column
colnames ( data_4D ) <- c ( colnames ( data_4D ) [2 : ncol ( data_4D ) ] , " _skip_last" )
data_4D <- data_4D [ , - ncol ( data_4D ) ]
}
2018-11-05 15:30:49 +01:00
colnames ( data_4D ) <- tolower ( colnames ( data_4D ) )
if ( all ( c ( " afnamedat" , " gebdatum" ) %in% colnames ( data_4D ) ) ) {
# add age
data_4D $ age <- NA_integer_
}
cols_wanted <- c ( " patientnr" , " gebdatum" , " age" , " mv" , " monsternr" , " afnamedat" , " bepaling" ,
" afd." , " spec" , " mat" , " matbijz." , " mocode" ,
" amfo" , " amox" , " anid" , " azit" , " casp" , " cecl" , " cefe" , " cfcl" ,
" cfot" , " cfox" , " cfta" , " cftr" , " cfur" , " chlo" , " cipr" , " clin" ,
" cocl" , " ctta" , " dapt" , " doxy" , " eryt" , " fluo" , " fluz" , " fosf" ,
" fusi" , " gehi" , " gent" , " imip" , " kana" , " levo" , " line" , " mero" ,
" metr" , " mico" , " mino" , " moxi" , " mupi" , " nali" , " nitr" , " norf" ,
" oxac" , " peni" , " pipe" , " pita" , " poly" , " posa" , " quda" , " rifa" ,
" spat" , " teic" , " tige" , " tobr" , " trim" , " trsu" , " vana" , " vanb" ,
" vanc" , " vori" )
# this ones actually exist
cols_wanted <- cols_wanted [cols_wanted %in% colnames ( data_4D ) ]
# order of columns
data_4D <- data_4D [ , cols_wanted ]
2018-11-15 12:42:35 +01:00
# backup original column names
colnames.bak <- toupper ( colnames ( data_4D ) )
2018-11-16 20:50:50 +01:00
colnames.bak [colnames.bak == " AGE" ] <- NA_character_
2018-11-15 12:42:35 +01:00
2018-11-05 15:30:49 +01:00
# rename of columns
colnames ( data_4D ) <- gsub ( " patientnr" , " patient_id" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " gebdatum" , " date_birth" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " mv" , " gender" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " monsternr" , " sample_id" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " afnamedat" , " date_received" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " bepaling" , " sample_test" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " afd." , " department" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " spec" , " specialty" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " matbijz." , " specimen_type" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " mat" , " specimen_group" , colnames ( data_4D ) , fixed = TRUE )
colnames ( data_4D ) <- gsub ( " mocode" , " mo" , colnames ( data_4D ) , fixed = TRUE )
2018-11-15 12:42:35 +01:00
if ( info == TRUE ) {
message ( " OK\nTransforming dates and age... " , appendLF = FALSE )
}
2018-11-05 15:30:49 +01:00
if ( " date_birth" %in% colnames ( data_4D ) ) {
data_4D $ date_birth <- to_date_4D ( data_4D $ date_birth )
}
if ( " date_received" %in% colnames ( data_4D ) ) {
data_4D $ date_received <- to_date_4D ( data_4D $ date_received )
}
if ( " age" %in% colnames ( data_4D ) ) {
2018-12-16 22:45:12 +01:00
data_4D $ age <- age ( data_4D $ date_birth , data_4D $ date_received )
2018-11-05 15:30:49 +01:00
}
if ( " gender" %in% colnames ( data_4D ) ) {
data_4D $ gender [data_4D $ gender == " V" ] <- " F"
}
2018-11-15 12:42:35 +01:00
if ( info == TRUE ) {
message ( " OK\nTransforming MO codes... " , appendLF = FALSE )
}
2018-11-05 15:30:49 +01:00
if ( " mo" %in% colnames ( data_4D ) ) {
data_4D $ mo <- as.mo ( data_4D $ mo )
# column right of mo is:
drug1 <- colnames ( data_4D ) [grep ( " ^mo$" , colnames ( data_4D ) ) + 1 ]
if ( ! is.na ( drug1 ) ) {
# and last is:
drug_last <- colnames ( data_4D ) [length ( data_4D ) ]
# transform those to rsi:
data_4D <- suppressWarnings ( mutate_at ( data_4D , vars ( drug1 : drug_last ) , as.rsi ) )
}
}
2018-11-15 12:42:35 +01:00
# set original column names as label (can be seen in RStudio Viewer)
if ( info == TRUE ) {
message ( " OK\nSetting original column names as label... " , appendLF = FALSE )
}
2019-10-11 17:21:02 +02:00
for ( i in seq_len ( ncol ( data_4D ) ) ) {
2018-11-16 20:50:50 +01:00
if ( ! is.na ( colnames.bak [i ] ) ) {
attr ( data_4D [ , i ] , " label" ) <- colnames.bak [i ]
}
}
if ( info == TRUE ) {
message ( " OK\nSetting query as label to data.frame... " , appendLF = FALSE )
2018-11-15 12:42:35 +01:00
}
2019-10-11 17:21:02 +02:00
qry <- readLines ( con <- file ( file , open = " r" ) ) [1 ]
2018-11-16 20:50:50 +01:00
close ( con )
attr ( data_4D , " label" ) <- qry
2018-11-15 12:42:35 +01:00
if ( info == TRUE ) {
message ( " OK" )
}
2018-11-05 15:30:49 +01:00
data_4D
}