2018-07-17 13:02:05 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# AUTHORS #
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# LICENCE #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License version 2.0, #
# as published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# ==================================================================== #
#' Key antibiotics for first \emph{weighted} isolates
#'
#' These function can be used to determine first isolates (see \code{\link{first_isolate}}). Using key antibiotics to determine first isolates is more reliable than without key antibiotics. These selected isolates will then be called first \emph{weighted} isolates.
#' @param tbl table with antibiotics coloms, like \code{amox} and \code{amcl}.
2018-07-17 14:48:11 +02:00
#' @param x,y characters to compare
2018-07-17 13:02:05 +02:00
#' @inheritParams first_isolate
2018-07-19 15:11:23 +02:00
#' @param universal_1,universal_2,universal_3,universal_4,universal_5,universal_6 column names of \strong{broad-spectrum} antibiotics, case-insensitive
#' @param GramPos_1,GramPos_2,GramPos_3,GramPos_4,GramPos_5,GramPos_6 column names of antibiotics for \strong{Gram positives}, case-insensitive
#' @param GramNeg_1,GramNeg_2,GramNeg_3,GramNeg_4,GramNeg_5,GramNeg_6 column names of antibiotics for \strong{Gram negatives}, case-insensitive
2018-07-23 10:35:39 +02:00
#' @param warnings give warning about missing antibiotic columns, they will anyway be ignored
#' @details The function \code{key_antibiotics} returns a character vector with 12 antibiotic results for every isolate. These isolates can then be compared using \code{key_antibiotics_equal}, to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (\code{"."}). The \code{\link{first_isolate}} function only uses this function on the same microbial species from the same patient. Using this, an MRSA will be included after a susceptible \emph{S. aureus} (MSSA) found within the same episode (see \code{episode} parameter of \code{\link{first_isolate}}). Without key antibiotic comparison it wouldn't.
2018-07-17 13:02:05 +02:00
#'
2018-07-19 15:11:23 +02:00
#' At default, the antibiotics that are used for \strong{Gram positive bacteria} are (colum names): \cr
#' \code{"amox"}, \code{"amcl"}, \code{"cfur"}, \code{"pita"}, \code{"cipr"}, \code{"trsu"} (until here is universal), \code{"vanc"}, \code{"teic"}, \code{"tetr"}, \code{"eryt"}, \code{"oxac"}, \code{"rifa"}.
2018-07-17 13:02:05 +02:00
#'
2018-07-19 15:11:23 +02:00
#' At default, the antibiotics that are used for \strong{Gram negative bacteria} are (colum names): \cr
#' \code{"amox"}, \code{"amcl"}, \code{"cfur"}, \code{"pita"}, \code{"cipr"}, \code{"trsu"} (until here is universal), \code{"gent"}, \code{"tobr"}, \code{"coli"}, \code{"cfot"}, \code{"cfta"}, \code{"mero"}.
2018-07-17 13:02:05 +02:00
#'
#'
2018-07-23 10:35:39 +02:00
#' The function \code{key_antibiotics_equal} checks the characters returned by \code{key_antibiotics} for equality, and returns a logical vector.
2018-07-17 13:02:05 +02:00
#' @inheritSection first_isolate Key antibiotics
#' @rdname key_antibiotics
#' @export
#' @importFrom dplyr %>% mutate if_else
#' @seealso \code{\link{first_isolate}}
#' @examples
2018-07-25 14:17:04 +02:00
#' # septic_patients is a dataset available in the AMR package
#' ?septic_patients
#' my_patients <- septic_patients
#'
#' library(dplyr)
2018-07-17 13:02:05 +02:00
#' # set key antibiotics to a new variable
2018-07-25 14:17:04 +02:00
#' my_patients <- my_patients %>%
#' mutate(keyab = key_antibiotics(.)) %>%
#' mutate(
#' # now calculate first isolates
#' first_regular = first_isolate(., "date", "patient_id", "bactid"),
#' # and first WEIGHTED isolates
#' first_weighted = first_isolate(., "date", "patient_id", "bactid",
#' col_keyantibiotics = "keyab")
#' )
2018-07-17 13:02:05 +02:00
#'
2018-07-25 14:17:04 +02:00
#' # Check the difference, in this data set it results in 7% more isolates:
#' sum(my_patients$first_regular, na.rm = TRUE)
#' sum(my_patients$first_weighted, na.rm = TRUE)
2018-07-17 13:02:05 +02:00
#'
2018-07-23 10:35:39 +02:00
#'
#' # output of the `key_antibiotics` function could be like this:
#' strainA <- "SSSRR.S.R..S"
#' strainB <- "SSSIRSSSRSSS"
#'
#' key_antibiotics_equal(strainA, strainB)
#' # TRUE, because I is ignored (as are missing values)
#'
#' key_antibiotics_equal(strainA, strainB, ignore_I = FALSE)
#' # FALSE, because I is not ignored and so the 4th value differs
2018-07-17 13:02:05 +02:00
key_antibiotics <- function ( tbl ,
col_bactid = " bactid" ,
2018-07-19 15:11:23 +02:00
universal_1 = " amox" ,
universal_2 = " amcl" ,
universal_3 = " cfur" ,
universal_4 = " pita" ,
universal_5 = " cipr" ,
universal_6 = " trsu" ,
GramPos_1 = " vanc" ,
GramPos_2 = " teic" ,
GramPos_3 = " tetr" ,
GramPos_4 = " eryt" ,
GramPos_5 = " oxac" ,
GramPos_6 = " rifa" ,
GramNeg_1 = " gent" ,
GramNeg_2 = " tobr" ,
GramNeg_3 = " coli" ,
GramNeg_4 = " cfot" ,
GramNeg_5 = " cfta" ,
GramNeg_6 = " mero" ,
2018-07-23 10:35:39 +02:00
warnings = TRUE ) {
2018-07-17 13:02:05 +02:00
if ( ! col_bactid %in% colnames ( tbl ) ) {
stop ( ' Column ' , col_bactid , ' not found.' , call. = FALSE )
}
# check columns
2018-07-19 15:11:23 +02:00
col.list <- c ( universal_1 , universal_2 , universal_3 , universal_4 , universal_5 , universal_6 ,
GramPos_1 , GramPos_2 , GramPos_3 , GramPos_4 , GramPos_5 , GramPos_6 ,
GramNeg_1 , GramNeg_2 , GramNeg_3 , GramNeg_4 , GramNeg_5 , GramNeg_6 )
2018-07-23 10:35:39 +02:00
col.list <- check_available_columns ( tbl = tbl , col.list = col.list , info = warnings )
2018-07-19 15:11:23 +02:00
universal_1 <- col.list [universal_1 ]
universal_2 <- col.list [universal_2 ]
universal_3 <- col.list [universal_3 ]
universal_4 <- col.list [universal_4 ]
universal_5 <- col.list [universal_5 ]
universal_6 <- col.list [universal_6 ]
GramPos_1 <- col.list [GramPos_1 ]
GramPos_2 <- col.list [GramPos_2 ]
GramPos_3 <- col.list [GramPos_3 ]
GramPos_4 <- col.list [GramPos_4 ]
GramPos_5 <- col.list [GramPos_5 ]
GramPos_6 <- col.list [GramPos_6 ]
GramNeg_1 <- col.list [GramNeg_1 ]
GramNeg_2 <- col.list [GramNeg_2 ]
GramNeg_3 <- col.list [GramNeg_3 ]
GramNeg_4 <- col.list [GramNeg_4 ]
GramNeg_5 <- col.list [GramNeg_5 ]
GramNeg_6 <- col.list [GramNeg_6 ]
2018-07-17 13:02:05 +02:00
2018-07-19 15:11:23 +02:00
universal <- c ( universal_1 , universal_2 , universal_3 ,
universal_4 , universal_5 , universal_6 )
gram_positive = c ( universal ,
GramPos_1 , GramPos_2 , GramPos_3 ,
GramPos_4 , GramPos_5 , GramPos_6 )
2018-07-17 13:02:05 +02:00
gram_positive <- gram_positive [ ! is.na ( gram_positive ) ]
2018-07-19 15:11:23 +02:00
gram_negative = c ( universal ,
GramNeg_1 , GramNeg_2 , GramNeg_3 ,
GramNeg_4 , GramNeg_5 , GramNeg_6 )
2018-07-17 13:02:05 +02:00
gram_negative <- gram_negative [ ! is.na ( gram_negative ) ]
# join microorganisms
tbl <- tbl %>% left_join_microorganisms ( col_bactid )
tbl $ key_ab <- NA_character_
# Gram +
tbl <- tbl %>% mutate ( key_ab =
if_else ( gramstain %like% ' ^Positive ' ,
apply ( X = tbl [ , gram_positive ] ,
MARGIN = 1 ,
FUN = function ( x ) paste ( x , collapse = " " ) ) ,
key_ab ) )
# Gram -
tbl <- tbl %>% mutate ( key_ab =
if_else ( gramstain %like% ' ^Negative ' ,
apply ( X = tbl [ , gram_negative ] ,
MARGIN = 1 ,
FUN = function ( x ) paste ( x , collapse = " " ) ) ,
key_ab ) )
# format
key_abs <- tbl %>%
pull ( key_ab ) %>%
2018-07-17 19:51:09 +02:00
gsub ( ' (NA|NULL)' , ' .' , .) %>%
gsub ( ' [^SIR]' , ' .' , ., ignore.case = TRUE )
2018-07-17 13:02:05 +02:00
key_abs
}
#' @importFrom dplyr progress_estimated %>%
#' @rdname key_antibiotics
#' @export
key_antibiotics_equal <- function ( x ,
y ,
type = c ( " keyantibiotics" , " points" ) ,
ignore_I = TRUE ,
points_threshold = 2 ,
info = FALSE ) {
# x is active row, y is lag
2018-07-25 14:17:04 +02:00
2018-07-17 13:02:05 +02:00
type <- type [1 ]
if ( length ( x ) != length ( y ) ) {
stop ( ' Length of `x` and `y` must be equal.' )
}
2018-07-25 14:17:04 +02:00
# only show progress bar on points or when at least 5000 isolates
info_needed <- info == TRUE & ( type == " points" | length ( x ) > 5000 )
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
result <- logical ( length ( x ) )
2018-07-23 10:35:39 +02:00
2018-07-25 14:17:04 +02:00
if ( info_needed == TRUE ) {
p <- dplyr :: progress_estimated ( length ( x ) )
}
2018-07-17 19:51:09 +02:00
2018-07-25 14:17:04 +02:00
for ( i in 1 : length ( x ) ) {
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
if ( info_needed == TRUE ) {
p $ tick ( ) $ print ( )
2018-07-17 19:51:09 +02:00
}
2018-07-25 14:17:04 +02:00
if ( is.na ( x [i ] ) ) {
x [i ] <- ' '
}
if ( is.na ( y [i ] ) ) {
y [i ] <- ' '
2018-07-17 13:02:05 +02:00
}
2018-07-25 14:17:04 +02:00
if ( x [i ] == y [i ] ) {
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
result [i ] <- TRUE
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
} else if ( nchar ( x [i ] ) != nchar ( y [i ] ) ) {
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
result [i ] <- FALSE
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
} else {
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
x_split <- strsplit ( x [i ] , " " ) [ [1 ] ]
y_split <- strsplit ( y [i ] , " " ) [ [1 ] ]
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
if ( type == ' keyantibiotics' ) {
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
if ( ignore_I == TRUE ) {
x_split [x_split == " I" ] <- " ."
y_split [y_split == " I" ] <- " ."
}
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
y_split [x_split == " ." ] <- " ."
x_split [y_split == " ." ] <- " ."
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
result [i ] <- all ( x_split == y_split )
} else if ( type == ' points' ) {
2018-07-17 19:51:09 +02:00
# count points for every single character:
# - no change is 0 points
# - I <-> S|R is 0.5 point
# - S|R <-> R|S is 1 point
# use the levels of as.rsi (S = 1, I = 2, R = 3)
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
suppressWarnings ( x_split <- x_split %>% as.rsi ( ) %>% as.double ( ) )
suppressWarnings ( y_split <- y_split %>% as.rsi ( ) %>% as.double ( ) )
points <- ( x_split - y_split ) %>% abs ( ) %>% sum ( na.rm = TRUE ) / 2
result [i ] <- points >= points_threshold
2018-07-17 13:02:05 +02:00
2018-07-25 14:17:04 +02:00
} else {
stop ( ' `' , type , ' ` is not a valid value for type, must be "points" or "keyantibiotics". See ?first_isolate.' )
2018-07-17 13:02:05 +02:00
}
}
}
2018-07-25 14:17:04 +02:00
if ( info_needed == TRUE ) {
cat ( ' \n' )
}
result
2018-07-17 13:02:05 +02:00
}