2019-05-10 16:44:59 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# SOURCE #
# https://gitlab.com/msberends/AMR #
# #
# LICENCE #
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# This R package was created for academic research and was publicly #
# released in the hope that it will be useful, but it comes WITHOUT #
# ANY WARRANTY OR LIABILITY. #
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
# ==================================================================== #
#' Transform to antibiotic ID
#'
#' Use this function to determine the antibiotic code of one or more antibiotics. The data set \code{\link{antibiotics}} will be searched for abbreviations, official names and synonyms (brand names).
#' @param x character vector to determine to antibiotic ID
#' @rdname as.ab
#' @keywords atc
#' @inheritSection WHOCC WHOCC
#' @export
#' @importFrom dplyr %>% filter slice pull
2019-05-17 20:22:04 +02:00
#' @details All entries in the \code{\link{antibiotics}} data set have three different identifiers: a human readable EARS-Net code (column \code{ab}, used by ECDC and WHONET), an ATC code (column \code{atc}, used by WHO), and a CID code (column \code{cid}, Compound ID, used by PubChem). The data set contains more than 5,000 official brand names from many different countries, as found in PubChem.
2019-05-13 10:10:16 +02:00
#'
2019-05-17 20:22:04 +02:00
#' Use the \code{\link{ab_property}} functions to get properties based on the returned antibiotic ID, see Examples.
2019-05-10 16:44:59 +02:00
#' @section Source:
#' World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology: \url{https://www.whocc.no/atc_ddd_index/}
#'
#' WHONET 2019 software: \url{http://www.whonet.org/software.html}
#'
#' European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: \url{http://ec.europa.eu/health/documents/community-register/html/atc.htm}
2019-05-13 10:10:16 +02:00
#' @return Character (vector) with class \code{"ab"}. Unknown values will return \code{NA}.
2019-05-10 16:44:59 +02:00
#' @seealso \code{\link{antibiotics}} for the dataframe that is being used to determine ATCs.
#' @inheritSection AMR Read more on our website!
#' @examples
#' # These examples all return "ERY", the ID of Erythromycin:
#' as.ab("J01FA01")
#' as.ab("J 01 FA 01")
#' as.ab("Erythromycin")
#' as.ab("eryt")
#' as.ab(" eryt 123")
#' as.ab("ERYT")
#' as.ab("ERY")
2019-05-16 21:20:00 +02:00
#' as.ab("eritromicine") # spelled wrong, yet works
2019-05-10 16:44:59 +02:00
#' as.ab("Erythrocin") # trade name
#' as.ab("Romycin") # trade name
#'
#' # Use ab_* functions to get a specific properties (see ?ab_property);
#' # they use as.ab() internally:
#' ab_name("J01FA01") # "Erythromycin"
#' ab_name("eryt") # "Erythromycin"
as.ab <- function ( x ) {
if ( is.ab ( x ) ) {
return ( x )
}
2019-05-16 21:20:00 +02:00
if ( all ( toupper ( x ) %in% AMR :: antibiotics $ ab ) ) {
# valid AB code, but not yet right class
return ( structure ( .Data = toupper ( x ) ,
class = " ab" ) )
}
2019-05-10 16:44:59 +02:00
x_bak <- x
# remove suffices
2019-06-11 14:18:25 +02:00
x_bak_clean <- gsub ( " _(mic|rsi|dis[ck])$" , " " , x , ignore.case = TRUE )
2019-05-10 16:44:59 +02:00
# remove disk concentrations, like LVX_NM -> LVX
2019-05-13 10:10:16 +02:00
x_bak_clean <- gsub ( " _[A-Z]{2}[0-9_]{0,3}$" , " " , x_bak_clean , ignore.case = TRUE )
2019-06-11 14:18:25 +02:00
# remove part between brackets if that's followed by another string
x_bak_clean <- gsub ( " (.*)+ [(].*[)]" , " \\1" , x_bak_clean )
# keep only a-Z, 0-9, space, slash and dash
x_bak_clean <- gsub ( " [^A-Z0-9 /-]" , " " , x_bak_clean , ignore.case = TRUE )
# keep only max 1 space
x_bak_clean <- trimws ( gsub ( " +" , " " , x_bak_clean , ignore.case = TRUE ) )
2019-05-10 16:44:59 +02:00
x <- unique ( x_bak_clean )
x_new <- rep ( NA_character_ , length ( x ) )
x_unknown <- character ( 0 )
for ( i in 1 : length ( x ) ) {
if ( is.na ( x [i ] ) | is.null ( x [i ] ) ) {
next
}
if ( identical ( x [i ] , " " ) ) {
x_unknown <- c ( x_unknown , x_bak [x [i ] == x_bak_clean ] [1 ] )
next
}
2019-06-07 22:47:37 +02:00
# prevent "bacteria" from coercing to TMP, since Bacterial is a brand name of it
if ( identical ( tolower ( x [i ] ) , " bacteria" ) ) {
x_unknown <- c ( x_unknown , x_bak [x [i ] == x_bak_clean ] [1 ] )
next
}
2019-05-10 16:44:59 +02:00
# exact AB code
found <- AMR :: antibiotics [which ( AMR :: antibiotics $ ab == toupper ( x [i ] ) ) , ] $ ab
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
# exact ATC code
found <- AMR :: antibiotics [which ( AMR :: antibiotics $ atc == toupper ( x [i ] ) ) , ] $ ab
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
# exact CID code
found <- AMR :: antibiotics [which ( AMR :: antibiotics $ cid == x [i ] ) , ] $ ab
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
# exact name
found <- AMR :: antibiotics [which ( toupper ( AMR :: antibiotics $ name ) == toupper ( x [i ] ) ) , ] $ ab
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
# exact synonym
synonym_found <- unlist ( lapply ( AMR :: antibiotics $ synonyms ,
function ( s ) if ( toupper ( x [i ] ) %in% toupper ( s ) ) {
TRUE
} else {
FALSE
} ) )
found <- AMR :: antibiotics $ ab [synonym_found == TRUE ]
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
# exact abbreviation
abbr_found <- unlist ( lapply ( AMR :: antibiotics $ abbreviations ,
function ( a ) if ( toupper ( x [i ] ) %in% toupper ( a ) ) {
TRUE
} else {
FALSE
} ) )
found <- AMR :: antibiotics $ ab [abbr_found == TRUE ]
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
# first >=4 characters of name
if ( nchar ( x [i ] ) >= 4 ) {
found <- AMR :: antibiotics [which ( toupper ( AMR :: antibiotics $ name ) %like% paste0 ( " ^" , x [i ] ) ) , ] $ ab
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
}
# allow characters that resemble others, but only continue when having more than 3 characters
if ( nchar ( x [i ] ) <= 3 ) {
x_unknown <- c ( x_unknown , x_bak [x [i ] == x_bak_clean ] [1 ] )
next
}
2019-05-16 21:20:00 +02:00
x_spelling <- tolower ( x [i ] )
x_spelling <- gsub ( " [iy]+" , " [iy]+" , x_spelling )
2019-06-07 22:47:37 +02:00
x_spelling <- gsub ( " (c|k|q|qu|s|z|x|ks)+" , " (c|k|q|qu|s|z|x|ks)+" , x_spelling )
2019-05-16 21:20:00 +02:00
x_spelling <- gsub ( " (ph|f|v)+" , " (ph|f|v)+" , x_spelling )
x_spelling <- gsub ( " (th|t)+" , " (th|t)+" , x_spelling )
x_spelling <- gsub ( " a+" , " a+" , x_spelling )
x_spelling <- gsub ( " e+" , " e+" , x_spelling )
x_spelling <- gsub ( " o+" , " o+" , x_spelling )
2019-05-10 16:44:59 +02:00
# allow any ending of -in/-ine and -im/-ime
2019-05-16 21:20:00 +02:00
x_spelling <- gsub ( " (\\[iy\\]\\+(n|m)|\\[iy\\]\\+(n|m)e\\+)$" , " [iy]+(n|m)e*" , x_spelling )
2019-05-10 16:44:59 +02:00
# allow any ending of -ol/-ole
2019-05-16 21:20:00 +02:00
x_spelling <- gsub ( " (o\\+l|o\\+le\\+)$" , " o+le*" , x_spelling )
# allow any ending of -on/-one
x_spelling <- gsub ( " (o\\+n|o\\+ne\\+)$" , " o+ne*" , x_spelling )
2019-06-07 22:47:37 +02:00
# replace multiple same characters to single one with '+', like "ll" -> "l+"
x_spelling <- gsub ( " (.)\\1+" , " \\1+" , x_spelling )
2019-05-10 16:44:59 +02:00
# try if name starts with it
found <- AMR :: antibiotics [which ( AMR :: antibiotics $ name %like% paste0 ( " ^" , x_spelling ) ) , ] $ ab
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
# and try if any synonym starts with it
synonym_found <- unlist ( lapply ( AMR :: antibiotics $ synonyms ,
function ( s ) if ( any ( s %like% paste0 ( " ^" , x_spelling ) ) ) {
TRUE
} else {
FALSE
} ) )
found <- AMR :: antibiotics $ ab [synonym_found == TRUE ]
if ( length ( found ) > 0 ) {
x_new [i ] <- found [1L ]
next
}
2019-06-11 14:18:25 +02:00
# try by removing all spaces
if ( x [i ] %like% " " ) {
found <- suppressWarnings ( as.ab ( gsub ( " +" , " " , x [i ] ) ) )
2019-06-11 15:31:32 +02:00
if ( length ( found ) > 0 & ! is.na ( found ) ) {
2019-06-11 14:18:25 +02:00
x_new [i ] <- found [1L ]
next
}
}
# try by removing all spaces and numbers
if ( x [i ] %like% " " | x [i ] %like% " [0-9]" ) {
found <- suppressWarnings ( as.ab ( gsub ( " [ 0-9]" , " " , x [i ] ) ) )
2019-06-11 15:31:32 +02:00
if ( length ( found ) > 0 & ! is.na ( found ) ) {
2019-06-11 14:18:25 +02:00
x_new [i ] <- found [1L ]
next
}
}
2019-05-10 16:44:59 +02:00
# not found
x_unknown <- c ( x_unknown , x_bak [x [i ] == x_bak_clean ] [1 ] )
}
2019-06-11 15:31:32 +02:00
# take failed ATC codes apart from rest
x_unknown_ATCs <- x_unknown [x_unknown %like% " [A-Z][0-9][0-9][A-Z][A-Z][0-9][0-9]" ]
x_unknown <- x_unknown [ ! x_unknown %in% x_unknown_ATCs ]
if ( length ( x_unknown_ATCs ) > 0 ) {
warning ( " These ATC codes are not (yet) in the antibiotics data set: " ,
paste ( ' "' , sort ( unique ( x_unknown_ATCs ) ) , ' "' , sep = " " , collapse = ' , ' ) ,
" ." ,
call. = FALSE )
}
2019-05-10 16:44:59 +02:00
if ( length ( x_unknown ) > 0 ) {
warning ( " These values could not be coerced to a valid antibiotic ID: " ,
paste ( ' "' , sort ( unique ( x_unknown ) ) , ' "' , sep = " " , collapse = ' , ' ) ,
" ." ,
call. = FALSE )
}
x_result <- data.frame ( x = x_bak_clean , stringsAsFactors = FALSE ) %>%
left_join ( data.frame ( x = x , x_new = x_new , stringsAsFactors = FALSE ) , by = " x" ) %>%
pull ( x_new )
2019-05-16 21:20:00 +02:00
if ( length ( x_result ) == 0 ) {
x_result <- NA_character_
}
2019-05-10 16:44:59 +02:00
structure ( .Data = x_result ,
class = " ab" )
}
2019-05-16 21:20:00 +02:00
#' @rdname as.ab
2019-05-10 16:44:59 +02:00
#' @export
is.ab <- function ( x ) {
identical ( class ( x ) , " ab" )
}
#' @exportMethod print.ab
#' @export
#' @noRd
print.ab <- function ( x , ... ) {
cat ( " Class 'ab'\n" )
print.default ( as.character ( x ) , quote = FALSE )
}
#' @exportMethod as.data.frame.ab
#' @export
#' @noRd
as.data.frame.ab <- function ( x , ... ) {
# same as as.data.frame.character but with removed stringsAsFactors
nm <- paste ( deparse ( substitute ( x ) , width.cutoff = 500L ) ,
collapse = " " )
if ( ! " nm" %in% names ( list ( ... ) ) ) {
as.data.frame.vector ( x , ... , nm = nm )
} else {
as.data.frame.vector ( x , ... )
}
}
#' @exportMethod pull.ab
#' @export
#' @importFrom dplyr pull
#' @noRd
pull.ab <- function ( .data , ... ) {
pull ( as.data.frame ( .data ) , ... )
}