mirror of
https://github.com/msberends/AMR.git
synced 2025-02-22 18:30:07 +01:00
88 lines
4.6 KiB
R
88 lines
4.6 KiB
R
|
# ==================================================================== #
|
||
|
# TITLE: #
|
||
|
# AMR: An R Package for Working with Antimicrobial Resistance Data #
|
||
|
# #
|
||
|
# SOURCE CODE: #
|
||
|
# https://github.com/msberends/AMR #
|
||
|
# #
|
||
|
# PLEASE CITE THIS SOFTWARE AS: #
|
||
|
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
|
||
|
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
|
||
|
# Journal of Statistical Software, 104(3), 1-31. #
|
||
|
# https://doi.org/10.18637/jss.v104.i03 #
|
||
|
# #
|
||
|
# Developed at the University of Groningen and the University Medical #
|
||
|
# Center Groningen in The Netherlands, in collaboration with many #
|
||
|
# colleagues from around the world, see our website. #
|
||
|
# #
|
||
|
# This R package is free software; you can freely use and distribute #
|
||
|
# it for both personal and commercial purposes under the terms of the #
|
||
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
||
|
# the Free Software Foundation. #
|
||
|
# We created this package for both routine data analysis and academic #
|
||
|
# research and it was publicly released in the hope that it will be #
|
||
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
||
|
# #
|
||
|
# Visit our website for the full manual and a complete tutorial about #
|
||
|
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
||
|
# ==================================================================== #
|
||
|
|
||
|
if (AMR:::pkg_is_available("ggplot2", also_load = TRUE)) {
|
||
|
pdf(NULL) # prevent Rplots.pdf being created
|
||
|
|
||
|
# scale_*_mic
|
||
|
aesthetics <- c("x", "y", "colour", "fill")
|
||
|
expected_methods <- c("transform", "transform_df", "breaks", "labels", "limits")
|
||
|
for (aest in aesthetics) {
|
||
|
scale_fn_name <- paste0("scale_", aest, "_continuous")
|
||
|
scale_obj <- getExportedValue("ggplot2", scale_fn_name)()
|
||
|
for (method in expected_methods) {
|
||
|
expect_true(is.function(scale_obj[[method]]) || method %in% names(scale_obj),
|
||
|
info = paste0("Method '", method, "' is missing in ggplot2::", scale_fn_name))
|
||
|
}
|
||
|
}
|
||
|
|
||
|
# scale_*_sir
|
||
|
aesthetics <- c("colour", "fill")
|
||
|
expected_methods <- c("transform", "transform_df", "labels", "limits")
|
||
|
for (aest in aesthetics) {
|
||
|
scale_fn_name <- "scale_discrete_manual"
|
||
|
scale_obj <- getExportedValue("ggplot2", scale_fn_name)(aesthetics = aest)
|
||
|
for (method in expected_methods) {
|
||
|
expect_true(is.function(scale_obj[[method]]) || method %in% names(scale_obj),
|
||
|
info = paste0("Method '", method, "' is missing in ggplot2::", scale_fn_name))
|
||
|
}
|
||
|
}
|
||
|
for (method in expected_methods) {
|
||
|
expect_true(is.function(ggplot2::scale_x_discrete()[[method]]) || method %in% names(ggplot2::scale_x_discrete()),
|
||
|
info = paste0("Method '", method, "' is missing in ggplot2::", "scale_x_discrete"))
|
||
|
}
|
||
|
|
||
|
expect_inherits(ggplot(data.frame(count = c(1,2,3, 4),
|
||
|
sir = c("S", "I", "R", "SDD")),
|
||
|
aes(x = sir, y = count, fill = sir)) +
|
||
|
geom_col() +
|
||
|
scale_x_sir(eucast_I = F, language = "el") +
|
||
|
scale_fill_sir(eucast_I = T, language = "nl"),
|
||
|
"gg")
|
||
|
expect_inherits(ggplot(data.frame(mic = as.mic(c(2,4,8, 16)),
|
||
|
sir = as.sir(c("S", "I", "R", "SDD"))),
|
||
|
aes(x = sir, y = mic)) +
|
||
|
geom_point() +
|
||
|
scale_y_mic(),
|
||
|
"gg")
|
||
|
expect_inherits(ggplot(data.frame(mic = as.mic(c(2,4,8, 16)),
|
||
|
sir = as.sir(c("S", "I", "R", "SDD"))),
|
||
|
aes(x = sir, y = mic)) +
|
||
|
geom_col() +
|
||
|
scale_y_mic(),
|
||
|
"gg")
|
||
|
expect_inherits(ggplot(data.frame(mic = as.mic(c(2,4,8, 16)),
|
||
|
sir = as.sir(c("S", "I", "R", "SDD"))),
|
||
|
aes(x = sir, y = mic)) +
|
||
|
geom_col() +
|
||
|
scale_y_mic(mic_range = c(4,16)) +
|
||
|
scale_x_sir(),
|
||
|
"gg")
|
||
|
}
|