2018-02-21 11:52:31 +01:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# AUTHORS #
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# LICENCE #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License version 2.0, #
# as published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# ==================================================================== #
#' Class 'rsi'
#'
#' This transforms a vector to a new class \code{rsi}, which is an ordered factor with levels \code{S < I < R}. Invalid antimicrobial interpretations will be translated as \code{NA} with a warning.
#' @rdname as.rsi
#' @param x vector
#' @return New class \code{rsi}
#' @export
#' @importFrom dplyr %>%
#' @examples
#' rsi_data <- as.rsi(c(rep("S", 474), rep("I", 36), rep("R", 370)))
#' rsi_data <- as.rsi(c(rep("S", 474), rep("I", 36), rep("R", 370), "A", "B", "C"))
2018-02-22 20:48:48 +01:00
#' is.rsi(rsi_data)
2018-03-14 09:58:58 +01:00
#'
2018-03-13 15:40:10 +01:00
#' plot(rsi_data) # for percentages
#' barplot(rsi_data) # for frequencies
2018-02-21 11:52:31 +01:00
as.rsi <- function ( x ) {
if ( is.rsi ( x ) ) {
x
} else {
x <- x %>% unlist ( )
x.bak <- x
na_before <- x [is.na ( x ) | x == ' ' ] %>% length ( )
x <- gsub ( ' [^RSI]+' , ' ' , x %>% toupper ( ) )
# needed for UMCG in cases of "S;S" but also "S;I"; the latter will be NA:
x <- gsub ( ' ^S+$' , ' S' , x )
x <- gsub ( ' ^I+$' , ' I' , x )
x <- gsub ( ' ^R+$' , ' R' , x )
x [ ! x %in% c ( ' S' , ' I' , ' R' ) ] <- NA
na_after <- x [is.na ( x ) | x == ' ' ] %>% length ( )
if ( na_before != na_after ) {
list_missing <- x.bak [is.na ( x ) & ! is.na ( x.bak ) & x.bak != ' ' ] %>%
unique ( ) %>%
sort ( )
list_missing <- paste0 ( ' "' , list_missing , ' "' , collapse = " , " )
warning ( na_after - na_before , ' results truncated (' ,
round ( ( ( na_after - na_before ) / length ( x ) ) / 100 ) ,
' %) that were invalid antimicrobial interpretations: ' ,
list_missing , call. = FALSE )
}
x <- x %>% toupper ( ) %>% factor ( levels = c ( " S" , " I" , " R" ) , ordered = TRUE )
class ( x ) <- c ( ' rsi' , ' ordered' , ' factor' )
x
}
}
#' @rdname as.rsi
#' @export
#' @importFrom dplyr %>%
is.rsi <- function ( x ) {
class ( x ) %>% identical ( c ( ' rsi' , ' ordered' , ' factor' ) )
}
#' @exportMethod print.rsi
#' @export
#' @importFrom dplyr %>%
#' @noRd
print.rsi <- function ( x , ... ) {
n_total <- x %>% length ( )
x <- x [ ! is.na ( x ) ]
n <- x %>% length ( )
S <- x [x == ' S' ] %>% length ( )
I <- x [x == ' I' ] %>% length ( )
R <- x [x == ' R' ] %>% length ( )
IR <- x [x %in% c ( ' I' , ' R' ) ] %>% length ( )
cat ( " Class 'rsi': " , n , " isolates\n" , sep = ' ' )
cat ( ' \n' )
cat ( ' <NA>: ' , n_total - n , ' \n' )
cat ( ' Sum of S: ' , S , ' \n' )
cat ( ' Sum of IR: ' , IR , ' \n' )
cat ( ' - Sum of R:' , R , ' \n' )
cat ( ' - Sum of I:' , I , ' \n' )
cat ( ' \n' )
print ( c (
`%S` = round ( ( S / n ) * 100 , 1 ) ,
`%IR` = round ( ( IR / n ) * 100 , 1 ) ,
`%I` = round ( ( I / n ) * 100 , 1 ) ,
`%R` = round ( ( R / n ) * 100 , 1 )
) )
}
#' @exportMethod summary.rsi
#' @export
#' @importFrom dplyr %>%
#' @noRd
summary.rsi <- function ( object , ... ) {
x <- object
n_total <- x %>% length ( )
x <- x [ ! is.na ( x ) ]
n <- x %>% length ( )
S <- x [x == ' S' ] %>% length ( )
I <- x [x == ' I' ] %>% length ( )
R <- x [x == ' R' ] %>% length ( )
IR <- x [x %in% c ( ' I' , ' R' ) ] %>% length ( )
lst <- c ( ' rsi' , n_total - n , S , IR , R , I )
names ( lst ) <- c ( " Mode" , " <NA>" , " Sum S" , " Sum IR" , " Sum R" , " Sum I" )
lst
}
#' @exportMethod plot.rsi
#' @export
2018-03-13 14:34:10 +01:00
#' @importFrom dplyr %>% group_by summarise filter mutate if_else n_distinct
2018-02-21 11:52:31 +01:00
#' @importFrom graphics plot text
#' @noRd
plot.rsi <- function ( x , ... ) {
x_name <- deparse ( substitute ( x ) )
data <- data.frame ( x = x ,
y = 1 ,
stringsAsFactors = TRUE ) %>%
group_by ( x ) %>%
summarise ( n = sum ( y ) ) %>%
filter ( ! is.na ( x ) ) %>%
mutate ( s = round ( ( n / sum ( n ) ) * 100 , 1 ) )
data $ x <- factor ( data $ x , levels = c ( ' S' , ' I' , ' R' ) , ordered = TRUE )
ymax <- if_else ( max ( data $ s ) > 95 , 105 , 100 )
plot ( x = data $ x ,
y = data $ s ,
lwd = 2 ,
col = c ( ' green' , ' orange' , ' red' ) ,
ylim = c ( 0 , ymax ) ,
ylab = ' Percentage' ,
xlab = ' Antimicrobial Interpretation' ,
main = paste ( ' Susceptibilty Analysis of' , x_name ) ,
2018-03-13 14:34:10 +01:00
axes = FALSE ,
2018-02-21 11:52:31 +01:00
... )
2018-03-13 14:34:10 +01:00
# x axis
axis ( side = 1 , at = 1 : n_distinct ( data $ x ) , labels = levels ( data $ x ) , lwd = 0 )
# y axis, 0-100%
axis ( side = 2 , at = seq ( 0 , 100 , 5 ) )
2018-02-21 11:52:31 +01:00
text ( x = data $ x ,
2018-03-13 14:34:10 +01:00
y = data $ s + 4 ,
2018-02-21 11:52:31 +01:00
labels = paste0 ( data $ s , ' % (n = ' , data $ n , ' )' ) )
}
2018-03-13 14:34:10 +01:00
#' @exportMethod barplot.rsi
#' @export
#' @importFrom dplyr %>% group_by summarise filter mutate if_else n_distinct
2018-03-13 15:40:10 +01:00
#' @importFrom graphics barplot axis
2018-03-13 14:34:10 +01:00
#' @noRd
2018-03-13 15:40:10 +01:00
barplot.rsi <- function ( height , ... ) {
x <- height
x_name <- deparse ( substitute ( height ) )
2018-03-13 14:34:10 +01:00
data <- data.frame ( rsi = x , cnt = 1 ) %>%
group_by ( rsi ) %>%
summarise ( cnt = sum ( cnt ) ) %>%
droplevels ( )
2018-03-13 15:40:10 +01:00
barplot ( table ( x ) ,
2018-03-13 14:34:10 +01:00
col = c ( ' green3' , ' orange2' , ' red3' ) ,
xlab = ' Antimicrobial Interpretation' ,
main = paste ( ' Susceptibilty Analysis of' , x_name ) ,
ylab = ' Frequency' ,
axes = FALSE ,
... )
# y axis, 0-100%
axis ( side = 2 , at = seq ( 0 , max ( data $ cnt ) + max ( data $ cnt ) * 1.1 , by = 25 ) )
}
2018-02-21 11:52:31 +01:00
#' Class 'mic'
#'
2018-03-13 11:57:30 +01:00
#' This transforms a vector to a new class\code{mic}, which is an ordered factor with valid MIC values as levels. Invalid MIC values will be translated as \code{NA} with a warning.
2018-02-21 11:52:31 +01:00
#' @rdname as.mic
#' @param x vector
#' @param na.rm a logical indicating whether missing values should be removed
#' @return New class \code{mic}
#' @export
#' @importFrom dplyr %>%
2018-02-22 20:48:48 +01:00
#' @examples
#' mic_data <- as.mic(c(">=32", "1.0", "1", "1.00", 8, "<=0.128", "8", "16", "16"))
#' is.mic(mic_data)
2018-03-14 09:58:58 +01:00
#'
2018-02-22 20:48:48 +01:00
#' plot(mic_data)
2018-03-13 14:34:10 +01:00
#' barplot(mic_data)
2018-02-21 11:52:31 +01:00
as.mic <- function ( x , na.rm = FALSE ) {
if ( is.mic ( x ) ) {
x
} else {
x <- x %>% unlist ( )
if ( na.rm == TRUE ) {
x <- x [ ! is.na ( x ) ]
}
x.bak <- x
# comma to dot
x <- gsub ( ' ,' , ' .' , x , fixed = TRUE )
# starting dots must start with 0
x <- gsub ( ' ^[.]' , ' 0.' , x )
# <=0.2560.512 should be 0.512
x <- gsub ( ' .*[.].*[.]' , ' 0.' , x )
# remove ending .0
x <- gsub ( ' [.]0$' , ' ' , x )
# remove all after last digit
x <- gsub ( ' [^0-9]$' , ' ' , x )
# remove last zeroes
x <- gsub ( ' [.]?0+$' , ' ' , x )
lvls <- c ( " <0.002" , " <=0.002" , " 0.002" , " >=0.002" , " >0.002" ,
" <0.003" , " <=0.003" , " 0.003" , " >=0.003" , " >0.003" ,
" <0.004" , " <=0.004" , " 0.004" , " >=0.004" , " >0.004" ,
" <0.006" , " <=0.006" , " 0.006" , " >=0.006" , " >0.006" ,
" <0.008" , " <=0.008" , " 0.008" , " >=0.008" , " >0.008" ,
" <0.012" , " <=0.012" , " 0.012" , " >=0.012" , " >0.012" ,
" <0.016" , " <=0.016" , " 0.016" , " >=0.016" , " >0.016" ,
" <0.023" , " <=0.023" , " 0.023" , " >=0.023" , " >0.023" ,
2018-03-13 11:57:30 +01:00
" <0.025" , " <=0.025" , " 0.025" , " >=0.025" , " >0.025" ,
2018-02-21 11:52:31 +01:00
" <0.03" , " <=0.03" , " 0.03" , " >=0.03" , " >0.03" ,
" <0.032" , " <=0.032" , " 0.032" , " >=0.032" , " >0.032" ,
" <0.047" , " <=0.047" , " 0.047" , " >=0.047" , " >0.047" ,
" <0.05" , " <=0.05" , " 0.05" , " >=0.05" , " >0.05" ,
" <0.06" , " <=0.06" , " 0.06" , " >=0.06" , " >0.06" ,
" <0.0625" , " <=0.0625" , " 0.0625" , " >=0.0625" , " >0.0625" ,
2018-03-13 11:57:30 +01:00
" <0.063" , " <=0.063" , " 0.063" , " >=0.063" , " >0.063" ,
2018-02-21 11:52:31 +01:00
" <0.064" , " <=0.064" , " 0.064" , " >=0.064" , " >0.064" ,
" <0.09" , " <=0.09" , " 0.09" , " >=0.09" , " >0.09" ,
" <0.094" , " <=0.094" , " 0.094" , " >=0.094" , " >0.094" ,
" <0.12" , " <=0.12" , " 0.12" , " >=0.12" , " >0.12" ,
" <0.125" , " <=0.125" , " 0.125" , " >=0.125" , " >0.125" ,
" <0.128" , " <=0.128" , " 0.128" , " >=0.128" , " >0.128" ,
2018-03-13 11:57:30 +01:00
" <0.16" , " <=0.16" , " 0.16" , " >=0.16" , " >0.16" ,
2018-02-21 11:52:31 +01:00
" <0.19" , " <=0.19" , " 0.19" , " >=0.19" , " >0.19" ,
" <0.25" , " <=0.25" , " 0.25" , " >=0.25" , " >0.25" ,
" <0.256" , " <=0.256" , " 0.256" , " >=0.256" , " >0.256" ,
2018-03-13 11:57:30 +01:00
" <0.32" , " <=0.32" , " 0.32" , " >=0.32" , " >0.32" ,
2018-02-21 11:52:31 +01:00
" <0.38" , " <=0.38" , " 0.38" , " >=0.38" , " >0.38" ,
" <0.5" , " <=0.5" , " 0.5" , " >=0.5" , " >0.5" ,
" <0.512" , " <=0.512" , " 0.512" , " >=0.512" , " >0.512" ,
2018-03-13 11:57:30 +01:00
" <0.64" , " <=0.64" , " 0.64" , " >=0.64" , " >0.64" ,
2018-02-21 11:52:31 +01:00
" <0.75" , " <=0.75" , " 0.75" , " >=0.75" , " >0.75" ,
" <1" , " <=1" , " 1" , " >=1" , " >1" ,
" <1.5" , " <=1.5" , " 1.5" , " >=1.5" , " >1.5" ,
" <2" , " <=2" , " 2" , " >=2" , " >2" ,
" <3" , " <=3" , " 3" , " >=3" , " >3" ,
" <4" , " <=4" , " 4" , " >=4" , " >4" ,
" <6" , " <=6" , " 6" , " >=6" , " >6" ,
" <8" , " <=8" , " 8" , " >=8" , " >8" ,
" <10" , " <=10" , " 10" , " >=10" , " >10" ,
" <12" , " <=12" , " 12" , " >=12" , " >12" ,
" <16" , " <=16" , " 16" , " >=16" , " >16" ,
" <20" , " <=20" , " 20" , " >=20" , " >20" ,
" <24" , " <=24" , " 24" , " >=24" , " >24" ,
" <32" , " <=32" , " 32" , " >=32" , " >32" ,
" <40" , " <=40" , " 40" , " >=40" , " >40" ,
" <48" , " <=48" , " 48" , " >=48" , " >48" ,
" <64" , " <=64" , " 64" , " >=64" , " >64" ,
" <80" , " <=80" , " 80" , " >=80" , " >80" ,
" <96" , " <=96" , " 96" , " >=96" , " >96" ,
" <128" , " <=128" , " 128" , " >=128" , " >128" ,
" <160" , " <=160" , " 160" , " >=160" , " >160" ,
" <256" , " <=256" , " 256" , " >=256" , " >256" ,
" <320" , " <=320" , " 320" , " >=320" , " >320" ,
" <512" , " <=512" , " 512" , " >=512" , " >512" ,
" <1024" , " <=1024" , " 1024" , " >=1024" , " >1024" )
x <- x %>% as.character ( )
na_before <- x [is.na ( x ) | x == ' ' ] %>% length ( )
x [ ! x %in% lvls ] <- NA
na_after <- x [is.na ( x ) | x == ' ' ] %>% length ( )
if ( na_before != na_after ) {
list_missing <- x.bak [is.na ( x ) & ! is.na ( x.bak ) & x.bak != ' ' ] %>%
unique ( ) %>%
sort ( )
list_missing <- paste0 ( ' "' , list_missing , ' "' , collapse = " , " )
warning ( na_after - na_before , ' results truncated (' ,
round ( ( ( na_after - na_before ) / length ( x ) ) / 100 ) ,
' %) that were invalid MICs: ' ,
list_missing , call. = FALSE )
}
x <- factor ( x = x ,
levels = lvls ,
ordered = TRUE )
class ( x ) <- c ( ' mic' , ' ordered' , ' factor' )
x
}
}
#' @rdname as.mic
#' @export
#' @importFrom dplyr %>%
is.mic <- function ( x ) {
class ( x ) %>% identical ( c ( ' mic' , ' ordered' , ' factor' ) )
}
#' @exportMethod as.double.mic
#' @export
#' @noRd
as.double.mic <- function ( x , ... ) {
2018-03-13 11:57:30 +01:00
as.double ( gsub ( ' (<|=|>)+' , ' ' , as.character ( x ) ) )
2018-02-21 11:52:31 +01:00
}
#' @exportMethod as.integer.mic
#' @export
#' @noRd
as.integer.mic <- function ( x , ... ) {
2018-03-13 11:57:30 +01:00
as.integer ( gsub ( ' (<|=|>)+' , ' ' , as.character ( x ) ) )
2018-02-21 11:52:31 +01:00
}
#' @exportMethod as.numeric.mic
#' @export
#' @noRd
as.numeric.mic <- function ( x , ... ) {
2018-03-13 11:57:30 +01:00
as.numeric ( gsub ( ' (<|=|>)+' , ' ' , as.character ( x ) ) )
2018-02-21 11:52:31 +01:00
}
#' @exportMethod print.mic
#' @export
#' @importFrom dplyr %>% tibble group_by summarise pull
#' @noRd
print.mic <- function ( x , ... ) {
n_total <- x %>% length ( )
x <- x [ ! is.na ( x ) ]
n <- x %>% length ( )
cat ( " Class 'mic': " , n , " isolates\n" , sep = ' ' )
cat ( ' \n' )
cat ( ' <NA> ' , n_total - n , ' \n' )
cat ( ' \n' )
tbl <- tibble ( x = x , y = 1 ) %>% group_by ( x ) %>% summarise ( y = sum ( y ) )
cnt <- tbl %>% pull ( y )
names ( cnt ) <- tbl %>% pull ( x )
print ( cnt )
}
#' @exportMethod summary.mic
#' @export
#' @importFrom dplyr %>% tibble group_by summarise pull
#' @noRd
summary.mic <- function ( object , ... ) {
x <- object
n_total <- x %>% length ( )
x <- x [ ! is.na ( x ) ]
n <- x %>% length ( )
return ( c ( " Mode" = ' mic' ,
" NA" = n_total - n ,
" Min." = sort ( x ) [1 ] %>% as.character ( ) ,
" Max." = sort ( x ) [n ] %>% as.character ( )
) )
cat ( " Class 'mic': " , n , " isolates\n" , sep = ' ' )
cat ( ' \n' )
cat ( ' <NA> ' , n_total - n , ' \n' )
cat ( ' \n' )
tbl <- tibble ( x = x , y = 1 ) %>% group_by ( x ) %>% summarise ( y = sum ( y ) )
cnt <- tbl %>% pull ( y )
names ( cnt ) <- tbl %>% pull ( x )
print ( cnt )
}
#' @exportMethod plot.mic
#' @export
#' @importFrom dplyr %>% group_by summarise
#' @importFrom graphics plot text
#' @noRd
plot.mic <- function ( x , ... ) {
x_name <- deparse ( substitute ( x ) )
2018-03-13 14:34:10 +01:00
create_barplot_mic ( x , x_name , ... )
}
#' @exportMethod barplot.mic
#' @export
#' @importFrom dplyr %>% group_by summarise
2018-03-13 15:40:10 +01:00
#' @importFrom graphics barplot axis
2018-03-13 14:34:10 +01:00
#' @noRd
2018-03-13 15:40:10 +01:00
barplot.mic <- function ( height , ... ) {
x_name <- deparse ( substitute ( height ) )
create_barplot_mic ( height , x_name , ... )
2018-03-13 14:34:10 +01:00
}
2018-03-13 15:40:10 +01:00
#' @importFrom graphics barplot axis
2018-03-13 14:34:10 +01:00
create_barplot_mic <- function ( x , x_name , ... ) {
2018-02-21 11:52:31 +01:00
data <- data.frame ( mic = x , cnt = 1 ) %>%
group_by ( mic ) %>%
summarise ( cnt = sum ( cnt ) ) %>%
droplevels ( )
2018-03-13 14:34:10 +01:00
barplot ( table ( droplevels ( x ) ) ,
ylab = ' Frequency' ,
xlab = ' MIC value' ,
main = paste ( ' MIC values of' , x_name ) ,
axes = FALSE ,
... )
axis ( 2 , seq ( 0 , max ( data $ cnt ) ) )
2018-02-21 11:52:31 +01:00
}