\item{Becker}{a logical to indicate whether \emph{Staphylococci} should be categorised into coagulase-negative \emph{Staphylococci} ("CoNS") and coagulase-positive \emph{Staphylococci} ("CoPS") instead of their own species, according to Karsten Becker \emph{et al.} [1,2]. Note that this does not include species that were newly named after these publications, like \emph{S. caeli}.
\item{Lancefield}{a logical to indicate whether beta-haemolytic \emph{Streptococci} should be categorised into Lancefield groups instead of their own species, according to Rebecca C. Lancefield [3]. These \emph{Streptococci} will be categorised in their first group, e.g. \emph{Streptococcus dysgalactiae} will be group C, although officially it was also categorised into groups G and L.
\item{allow_uncertain}{a logical (\code{TRUE} or \code{FALSE}) or a value between 0 and 3 to indicate whether the input should be checked for less possible results, see Details}
\item{reference_df}{a \code{data.frame} to use for extra reference when translating \code{x} to a valid \code{mo}. See \code{\link{set_mo_source}} and \code{\link{get_mo_source}} to automate the usage of your own codes (e.g. used in your analysis or organisation).}
Use this function to determine a valid microorganism ID (\code{mo}). Determination is done using intelligent rules and the complete taxonomic kingdoms Bacteria, Chromista, Protozoa, Archaea and most microbial species from the kingdom Fungi (see Source). The input can be almost anything: a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), an abbreviation known in the field (like \code{"MRSA"}), or just a genus. Please see Examples.
The \code{as.mo()} function gains experience from previously determined microbial IDs and learns from it. This drastically improves both speed and reliability. Use \code{clean_mo_history()} to reset the algorithms. Only experience from your current \code{AMR} package version is used. This is done because in the future the taxonomic tree (which is included in this package) may change for any organism and it consequently has to rebuild its knowledge.
Usually, any guess after the first try runs 80-95\% faster than the first try.
For now, learning only works per session. If R is closed or terminated, the algorithms reset. This will probably be resolved in a next version.
\item{Human pathogenic prevalence: it first searches in more prevalent microorganisms, then less prevalent ones (see \emph{Microbial prevalence of pathogens in humans} below)}
\item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
The algorithm can additionally use three different levels of uncertainty to guess valid results. The default is \code{allow_uncertain = TRUE}, which is equal to uncertainty level 2. Using \code{allow_uncertain = FALSE} will skip all of these additional rules:
\item{\code{"Streptococcus group B (known as S. agalactiae)"}. The text between brackets will be removed and a warning will be thrown that the result \emph{Streptococcus group B} (\code{B_STRPT_GRB}) needs review.}
\item{\code{"S. aureus - please mind: MRSA"}. The last word will be stripped, after which the function will try to find a match. If it does not, the second last word will be stripped, etc. Again, a warning will be thrown that the result \emph{Staphylococcus aureus} (\code{B_STPHY_AUR}) needs review.}
\item{\code{"Fluoroquinolone-resistant Neisseria gonorrhoeae"}. The first word will be stripped, after which the function will try to find a match. A warning will be thrown that the result \emph{Neisseria gonorrhoeae} (\code{B_NESSR_GON}) needs review.}
The intelligent rules takes into account microbial prevalence of pathogens in humans. It uses three groups and all (sub)species are in only one group. These groups are:
[2] Becker K \emph{et al.} \strong{Implications of identifying the recently defined members of the S. aureus complex, S. argenteus and S. schweitzeri: A position paper of members of the ESCMID Study Group for staphylococci and Staphylococcal Diseases (ESGS).}. 2019. Clin Microbiol Infect. 2019 Mar 11. \url{https://doi.org/10.1016/j.cmi.2019.02.028}
[3] Lancefield RC \strong{A serological differentiation of human and other groups of hemolytic streptococci}. 1933. J Exp Med. 57(4): 571–95. \url{https://dx.doi.org/10.1084/jem.57.4.571}
[4] Catalogue of Life: Annual Checklist (public online taxonomic database), \url{www.catalogueoflife.org} (check included annual version with \code{\link{catalogue_of_life_version}()}).
This package contains the complete taxonomic tree of almost all microorganisms (~60,000 species) from the authoritative and comprehensive Catalogue of Life (\url{http://www.catalogueoflife.org}). The Catalogue of Life is the most comprehensive and authoritative global index of species currently available.
\link[=catalogue_of_life]{Click here} for more information about the included taxa. The Catalogue of Life releases updates annually; check which version was included in this package with \code{\link{catalogue_of_life_version}()}.
On our website \url{https://msberends.gitlab.io/AMR} you can find \href{https://msberends.gitlab.io/AMR/articles/AMR.html}{a comprehensive tutorial} about how to conduct AMR analysis, the \href{https://msberends.gitlab.io/AMR/reference}{complete documentation of all functions} (which reads a lot easier than here in R) and \href{https://msberends.gitlab.io/AMR/articles/WHONET.html}{an example analysis using WHONET data}.