2018-02-21 11:52:31 +01:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
# https://gitlab.com/msberends/AMR #
2018-02-21 11:52:31 +01:00
# #
# LICENCE #
2020-01-05 17:22:09 +01:00
# (c) 2018-2020 Berends MS, Luz CF et al. #
2018-02-21 11:52:31 +01:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
2020-01-05 17:22:09 +01:00
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2019-04-05 18:47:39 +02:00
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
2018-02-21 11:52:31 +01:00
# ==================================================================== #
#' Determine first (weighted) isolates
#'
2018-04-02 11:11:21 +02:00
#' Determine first (weighted) isolates of all microorganisms of every patient per episode and (if needed) per specimen type.
2020-02-22 17:03:47 +01:00
#' @inheritSection lifecycle Stable lifecycle
2019-11-28 22:32:17 +01:00
#' @param x a [`data.frame`] containing isolates.
2019-01-15 12:45:24 +01:00
#' @param col_date column name of the result date (or date that is was received on the lab), defaults to the first column of with a date class
2018-12-10 15:14:29 +01:00
#' @param col_patient_id column name of the unique IDs of the patients, defaults to the first column that starts with 'patient' or 'patid' (case insensitive)
2019-11-28 22:32:17 +01:00
#' @param col_mo column name of the IDs of the microorganisms (see [as.mo()]), defaults to the first column of class [`mo`]. Values will be coerced using [as.mo()].
#' @param col_testcode column name of the test codes. Use `col_testcode = NULL` to **not** exclude certain test codes (like test codes for screening). In that case `testcodes_exclude` will be ignored.
2018-04-02 11:11:21 +02:00
#' @param col_specimen column name of the specimen type or group
2019-11-28 22:32:17 +01:00
#' @param col_icu column name of the logicals (`TRUE`/`FALSE`) whether a ward or department is an Intensive Care Unit (ICU)
#' @param col_keyantibiotics column name of the key antibiotics to determine first *weighted* isolates, see [key_antibiotics()]. Defaults to the first column that starts with 'key' followed by 'ab' or 'antibiotics' (case insensitive). Use `col_keyantibiotics = FALSE` to prevent this.
2019-08-08 22:39:42 +02:00
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again. The default of 365 days is based on the guideline by CLSI, see Source.
2018-03-19 20:39:23 +01:00
#' @param testcodes_exclude character vector with test codes that should be excluded (case-insensitive)
2019-11-28 22:32:17 +01:00
#' @param icu_exclude logical whether ICU isolates should be excluded (rows with value `TRUE` in column `col_icu`)
#' @param specimen_group value in column `col_specimen` to filter on
#' @param type type to determine weighed isolates; can be `"keyantibiotics"` or `"points"`, see Details
#' @param ignore_I logical to determine whether antibiotic interpretations with `"I"` will be ignored when `type = "keyantibiotics"`, see Details
#' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate when `type = "points"`, see Details
2018-02-21 11:52:31 +01:00
#' @param info print progress
2019-11-28 22:32:17 +01:00
#' @param include_unknown logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code `"UNKNOWN"`, which defaults to `FALSE`. For WHONET users, this means that all records with organism code `"con"` (*contamination*) will be excluded at default. Isolates with a microbial ID of `NA` will always be excluded as first isolate.
#' @param ... parameters passed on to the [first_isolate()] function
#' @details **WHY THIS IS SO IMPORTANT** \cr
2019-11-28 23:00:37 +01:00
#' To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode [(ref)](https://www.ncbi.nlm.nih.gov/pubmed/17304462). If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all *S. aureus* isolates would be overestimated, because you included this MRSA more than once. It would be [selection bias](https://en.wikipedia.org/wiki/Selection_bias).
2018-12-22 22:39:34 +01:00
#'
2019-11-28 22:32:17 +01:00
#' All isolates with a microbial ID of `NA` will be excluded as first isolate.
2019-08-08 22:39:42 +02:00
#'
2020-05-18 10:30:53 +02:00
#' The functions [filter_first_isolate()] and [filter_first_weighted_isolate()] are helper functions to quickly filter on first isolates. The function [filter_first_isolate()] is essentially equal to one of:
2019-11-28 22:32:17 +01:00
#' ```
2020-05-18 10:30:53 +02:00
#' x %>% filter(first_isolate(., ...))
2019-11-28 22:32:17 +01:00
#' ```
#' The function [filter_first_weighted_isolate()] is essentially equal to:
#' ```
#' x %>%
#' mutate(keyab = key_antibiotics(.)) %>%
2019-05-13 14:56:23 +02:00
#' mutate(only_weighted_firsts = first_isolate(x,
2019-11-28 22:32:17 +01:00
#' col_keyantibiotics = "keyab", ...)) %>%
#' filter(only_weighted_firsts == TRUE) %>%
2020-05-18 10:30:53 +02:00
#' select(-only_weighted_firsts, -keyab)
2019-11-28 22:32:17 +01:00
#' ```
2018-07-17 13:02:05 +02:00
#' @section Key antibiotics:
2019-11-28 22:32:17 +01:00
#' There are two ways to determine whether isolates can be included as first *weighted* isolates which will give generally the same results:
2018-03-13 11:57:30 +01:00
#'
2019-11-28 22:32:17 +01:00
#' 1. Using `type = "keyantibiotics"` and parameter `ignore_I`
#'
#' Any difference from S to R (or vice versa) will (re)select an isolate as a first weighted isolate. With `ignore_I = FALSE`, also differences from I to S|R (or vice versa) will lead to this. This is a reliable method and 30-35 times faster than method 2. Read more about this in the [key_antibiotics()] function.
#'
#' 2. Using `type = "points"` and parameter `points_threshold`
#'
#' A difference from I to S|R (or vice versa) means 0.5 points, a difference from S to R (or vice versa) means 1 point. When the sum of points exceeds `points_threshold`, which default to `2`, an isolate will be (re)selected as a first weighted isolate.
2018-12-22 22:39:34 +01:00
#' @rdname first_isolate
2019-11-28 22:32:17 +01:00
#' @seealso [key_antibiotics()]
2018-02-26 12:15:52 +01:00
#' @export
2019-11-28 22:32:17 +01:00
#' @return A [`logical`] vector
2020-05-16 13:05:47 +02:00
#' @source Methodology of this function is strictly based on:
2019-11-28 22:32:17 +01:00
#'
#' **M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition**, 2014, *Clinical and Laboratory Standards Institute (CLSI)*. <https://clsi.org/standards/products/microbiology/documents/m39/>.
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-02-21 11:52:31 +01:00
#' @examples
2019-08-27 16:45:42 +02:00
#' # `example_isolates` is a dataset available in the AMR package.
#' # See ?example_isolates.
2018-04-02 11:11:21 +02:00
#'
2020-05-16 13:05:47 +02:00
#' \dontrun{
2018-03-19 20:39:23 +01:00
#' library(dplyr)
2018-12-22 22:39:34 +01:00
#' # Filter on first isolates:
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2020-04-15 11:30:28 +02:00
#' mutate(first_isolate = first_isolate(.)) %>%
2018-12-22 22:39:34 +01:00
#' filter(first_isolate == TRUE)
2019-08-14 14:57:06 +02:00
#'
2018-07-25 14:17:04 +02:00
#' # Now let's see if first isolates matter:
2019-08-27 16:45:42 +02:00
#' A <- example_isolates %>%
2018-07-25 14:17:04 +02:00
#' group_by(hospital_id) %>%
2019-05-10 16:44:59 +02:00
#' summarise(count = n_rsi(GEN), # gentamicin availability
2019-11-10 13:17:20 +01:00
#' resistance = resistance(GEN)) # gentamicin resistance
2018-07-25 14:17:04 +02:00
#'
2019-08-27 16:45:42 +02:00
#' B <- example_isolates %>%
2019-05-10 16:44:59 +02:00
#' filter_first_weighted_isolate() %>% # the 1st isolate filter
2018-07-25 14:17:04 +02:00
#' group_by(hospital_id) %>%
2019-05-10 16:44:59 +02:00
#' summarise(count = n_rsi(GEN), # gentamicin availability
2019-11-10 13:17:20 +01:00
#' resistance = resistance(GEN)) # gentamicin resistance
2018-07-25 14:17:04 +02:00
#'
2018-08-10 15:01:05 +02:00
#' # Have a look at A and B.
2020-04-15 11:30:28 +02:00
#' # B is more reliable because every isolate is counted only once.
2020-05-16 13:05:47 +02:00
#' # Gentamicin resistance in hospital D appears to be 3.7% higher than
2019-04-09 14:59:17 +02:00
#' # when you (erroneously) would have used all isolates for analysis.
2018-07-25 14:17:04 +02:00
#'
2018-12-22 22:39:34 +01:00
#'
2018-07-25 14:17:04 +02:00
#' ## OTHER EXAMPLES:
2020-04-15 11:30:28 +02:00
#'
#' # Short-hand versions:
#' example_isolates %>%
#' filter_first_isolate()
#'
#' example_isolates %>%
#' filter_first_weighted_isolate()
#'
2018-02-21 11:52:31 +01:00
#'
2018-02-22 20:48:48 +01:00
#' # set key antibiotics to a new variable
2019-05-13 14:56:23 +02:00
#' x$keyab <- key_antibiotics(x)
2018-02-21 11:52:31 +01:00
#'
2019-10-11 17:21:02 +02:00
#' x$first_isolate <- first_isolate(x)
2018-02-21 11:52:31 +01:00
#'
2019-10-11 17:21:02 +02:00
#' x$first_isolate_weighed <- first_isolate(x, col_keyantibiotics = 'keyab')
2018-02-21 11:52:31 +01:00
#'
2019-10-11 17:21:02 +02:00
#' x$first_blood_isolate <- first_isolate(x, specimen_group = "Blood")
2018-02-21 11:52:31 +01:00
#' }
2019-05-13 14:56:23 +02:00
first_isolate <- function ( x ,
2018-10-23 11:15:05 +02:00
col_date = NULL ,
col_patient_id = NULL ,
col_mo = NULL ,
col_testcode = NULL ,
col_specimen = NULL ,
col_icu = NULL ,
col_keyantibiotics = NULL ,
2018-02-21 11:52:31 +01:00
episode_days = 365 ,
2018-10-23 11:15:05 +02:00
testcodes_exclude = NULL ,
2018-02-21 11:52:31 +01:00
icu_exclude = FALSE ,
2018-12-22 22:39:34 +01:00
specimen_group = NULL ,
2018-03-19 20:39:23 +01:00
type = " keyantibiotics" ,
ignore_I = TRUE ,
2018-02-27 20:01:02 +01:00
points_threshold = 2 ,
2020-02-21 21:13:38 +01:00
info = interactive ( ) ,
2019-08-08 22:39:42 +02:00
include_unknown = FALSE ,
2018-12-22 22:39:34 +01:00
... ) {
2019-10-11 17:21:02 +02:00
2018-12-22 22:39:34 +01:00
dots <- unlist ( list ( ... ) )
if ( length ( dots ) != 0 ) {
# backwards compatibility with old parameters
dots.names <- dots %>% names ( )
2019-10-11 17:21:02 +02:00
if ( " filter_specimen" %in% dots.names ) {
specimen_group <- dots [which ( dots.names == " filter_specimen" ) ]
2018-12-22 22:39:34 +01:00
}
2019-10-11 17:21:02 +02:00
if ( " tbl" %in% dots.names ) {
x <- dots [which ( dots.names == " tbl" ) ]
2019-05-13 14:56:23 +02:00
}
2018-10-23 11:15:05 +02:00
}
2019-10-11 17:21:02 +02:00
2020-06-22 11:18:40 +02:00
stop_ifnot ( is.data.frame ( x ) , " `x` must be a data.frame" )
stop_if ( any ( dim ( x ) == 0 ) , " `x` must contain rows and columns" )
2020-05-16 13:05:47 +02:00
# remove data.table, grouping from tibbles, etc.
x <- as.data.frame ( x , stringsAsFactors = FALSE )
2018-10-23 11:15:05 +02:00
# try to find columns based on type
# -- mo
2019-01-15 12:45:24 +01:00
if ( is.null ( col_mo ) ) {
2019-05-23 16:58:59 +02:00
col_mo <- search_type_in_df ( x = x , type = " mo" )
2020-06-22 11:18:40 +02:00
stop_if ( is.null ( col_mo ) , " `col_mo` must be set" )
2018-10-23 11:15:05 +02:00
}
2019-10-11 17:21:02 +02:00
2018-10-23 11:15:05 +02:00
# -- date
2018-12-10 15:14:29 +01:00
if ( is.null ( col_date ) ) {
2019-05-23 16:58:59 +02:00
col_date <- search_type_in_df ( x = x , type = " date" )
2020-06-22 11:18:40 +02:00
stop_if ( is.null ( col_date ) , " `col_date` must be set" )
2018-08-31 13:36:19 +02:00
}
2020-05-16 13:05:47 +02:00
# convert to Date
dates <- as.Date ( x [ , col_date , drop = TRUE ] )
2019-05-13 14:56:23 +02:00
dates [is.na ( dates ) ] <- as.Date ( " 1970-01-01" )
x [ , col_date ] <- dates
2019-10-11 17:21:02 +02:00
2018-10-23 11:15:05 +02:00
# -- patient id
2019-01-15 12:45:24 +01:00
if ( is.null ( col_patient_id ) ) {
2019-10-11 17:21:02 +02:00
if ( all ( c ( " First name" , " Last name" , " Sex" ) %in% colnames ( x ) ) ) {
2019-01-29 20:20:09 +01:00
# WHONET support
2020-05-16 13:05:47 +02:00
x $ patient_id <- paste ( x $ `First name` , x $ `Last name` , x $ Sex )
2019-01-29 20:20:09 +01:00
col_patient_id <- " patient_id"
2020-05-16 13:05:47 +02:00
message ( font_blue ( paste0 ( " NOTE: Using combined columns `" , font_bold ( " First name" ) , " `, `" , font_bold ( " Last name" ) , " ` and `" , font_bold ( " Sex" ) , " ` as input for `col_patient_id`" ) ) )
2019-01-29 20:20:09 +01:00
} else {
2019-05-23 16:58:59 +02:00
col_patient_id <- search_type_in_df ( x = x , type = " patient_id" )
2019-01-29 20:20:09 +01:00
}
2020-06-22 11:18:40 +02:00
stop_if ( is.null ( col_patient_id ) , " `col_patient_id` must be set" )
2018-12-10 15:14:29 +01:00
}
2019-10-11 17:21:02 +02:00
2018-12-10 15:14:29 +01:00
# -- key antibiotics
2019-01-15 12:45:24 +01:00
if ( is.null ( col_keyantibiotics ) ) {
2019-05-23 16:58:59 +02:00
col_keyantibiotics <- search_type_in_df ( x = x , type = " keyantibiotics" )
2018-12-10 15:14:29 +01:00
}
if ( isFALSE ( col_keyantibiotics ) ) {
col_keyantibiotics <- NULL
}
2019-10-11 17:21:02 +02:00
2019-01-29 00:06:50 +01:00
# -- specimen
2019-05-31 14:25:11 +02:00
if ( is.null ( col_specimen ) & ! is.null ( specimen_group ) ) {
2019-05-23 16:58:59 +02:00
col_specimen <- search_type_in_df ( x = x , type = " specimen" )
2019-01-29 00:06:50 +01:00
}
if ( isFALSE ( col_specimen ) ) {
col_specimen <- NULL
}
2019-10-11 17:21:02 +02:00
2018-03-19 20:39:23 +01:00
# check if columns exist
2019-05-13 14:56:23 +02:00
check_columns_existance <- function ( column , tblname = x ) {
2018-10-23 11:15:05 +02:00
if ( ! is.null ( column ) ) {
2020-06-22 11:18:40 +02:00
stop_ifnot ( column %in% colnames ( tblname ) ,
" Column `" , column , " ` not found." , call = FALSE )
2018-02-21 11:52:31 +01:00
}
}
2019-10-11 17:21:02 +02:00
2018-02-21 11:52:31 +01:00
check_columns_existance ( col_date )
2018-02-26 14:06:31 +01:00
check_columns_existance ( col_patient_id )
2018-08-31 13:36:19 +02:00
check_columns_existance ( col_mo )
2018-02-21 11:52:31 +01:00
check_columns_existance ( col_testcode )
check_columns_existance ( col_icu )
check_columns_existance ( col_keyantibiotics )
2019-10-11 17:21:02 +02:00
2020-05-16 13:05:47 +02:00
# create original row index
x $ newvar_row_index <- seq_len ( nrow ( x ) )
x $ newvar_mo <- x %>% pull ( col_mo ) %>% as.mo ( )
x $ newvar_genus_species <- paste ( mo_genus ( x $ newvar_mo ) , mo_species ( x $ newvar_mo ) )
x $ newvar_date <- x %>% pull ( col_date )
x $ newvar_patient_id <- x %>% pull ( col_patient_id )
2019-08-08 22:39:42 +02:00
2018-10-23 11:15:05 +02:00
if ( is.null ( col_testcode ) ) {
testcodes_exclude <- NULL
2018-02-21 11:52:31 +01:00
}
2018-03-19 20:39:23 +01:00
# remove testcodes
2018-10-23 11:15:05 +02:00
if ( ! is.null ( testcodes_exclude ) & info == TRUE ) {
2020-05-16 13:05:47 +02:00
message ( font_black ( paste0 ( " [Criterion] Exclude test codes: " , toString ( paste0 ( " '" , testcodes_exclude , " '" ) ) ) ) )
2018-02-21 11:52:31 +01:00
}
2019-10-11 17:21:02 +02:00
2018-10-23 11:15:05 +02:00
if ( is.null ( col_specimen ) ) {
2018-12-22 22:39:34 +01:00
specimen_group <- NULL
2018-03-19 20:39:23 +01:00
}
2019-10-11 17:21:02 +02:00
2018-03-19 20:39:23 +01:00
# filter on specimen group and keyantibiotics when they are filled in
2018-12-22 22:39:34 +01:00
if ( ! is.null ( specimen_group ) ) {
2019-05-13 14:56:23 +02:00
check_columns_existance ( col_specimen , x )
2018-02-21 11:52:31 +01:00
if ( info == TRUE ) {
2020-05-16 13:05:47 +02:00
message ( font_black ( paste0 ( " [Criterion] Exclude other than specimen group '" , specimen_group , " '" ) ) )
2018-02-21 11:52:31 +01:00
}
}
2018-10-23 11:15:05 +02:00
if ( ! is.null ( col_keyantibiotics ) ) {
2020-05-16 13:05:47 +02:00
x $ newvar_key_ab <- x [ , col_keyantibiotics , drop = TRUE ]
2018-02-21 11:52:31 +01:00
}
2019-10-11 17:21:02 +02:00
2018-10-23 11:15:05 +02:00
if ( is.null ( testcodes_exclude ) ) {
2019-10-11 17:21:02 +02:00
testcodes_exclude <- " "
2018-02-21 11:52:31 +01:00
}
2019-10-11 17:21:02 +02:00
2019-08-08 22:39:42 +02:00
# arrange data to the right sorting
2018-12-22 22:39:34 +01:00
if ( is.null ( specimen_group ) ) {
2020-05-16 13:05:47 +02:00
x <- x [order ( x $ newvar_patient_id ,
x $ newvar_genus_species ,
x $ newvar_date ) , ]
rownames ( x ) <- NULL
2018-02-21 11:52:31 +01:00
row.start <- 1
2019-05-13 14:56:23 +02:00
row.end <- nrow ( x )
2018-02-21 11:52:31 +01:00
} else {
2020-05-16 13:05:47 +02:00
# filtering on specimen and only analyse these rows to save time
x <- x [order ( pull ( x , col_specimen ) ,
x $ newvar_patient_id ,
x $ newvar_genus_species ,
x $ newvar_date ) , ]
rownames ( x ) <- NULL
2018-02-21 11:52:31 +01:00
suppressWarnings (
2019-05-13 14:56:23 +02:00
row.start <- which ( x %>% pull ( col_specimen ) == specimen_group ) %>% min ( na.rm = TRUE )
2018-02-21 11:52:31 +01:00
)
suppressWarnings (
2019-05-13 14:56:23 +02:00
row.end <- which ( x %>% pull ( col_specimen ) == specimen_group ) %>% max ( na.rm = TRUE )
2018-02-21 11:52:31 +01:00
)
}
2019-10-11 17:21:02 +02:00
2019-08-08 22:39:42 +02:00
# no isolates found
2018-02-21 11:52:31 +01:00
if ( abs ( row.start ) == Inf | abs ( row.end ) == Inf ) {
if ( info == TRUE ) {
2020-05-16 13:05:47 +02:00
message ( paste ( " => Found" , font_bold ( " no isolates" ) ) )
2018-02-21 11:52:31 +01:00
}
2019-08-08 22:39:42 +02:00
return ( rep ( FALSE , nrow ( x ) ) )
2018-02-21 11:52:31 +01:00
}
2019-08-08 22:39:42 +02:00
# did find some isolates - add new index numbers of rows
2020-05-16 13:05:47 +02:00
x $ newvar_row_index_sorted <- seq_len ( nrow ( x ) )
2019-10-11 17:21:02 +02:00
scope.size <- row.end - row.start + 1
identify_new_year <- function ( x , episode_days ) {
2018-12-31 01:48:53 +01:00
# I asked on StackOverflow:
# https://stackoverflow.com/questions/42122245/filter-one-row-every-year
if ( length ( x ) == 1 ) {
return ( TRUE )
}
2019-06-07 22:47:37 +02:00
indices <- integer ( 0 )
start <- x [1 ]
ind <- 1
indices [ind ] <- ind
2018-12-31 01:48:53 +01:00
for ( i in 2 : length ( x ) ) {
2019-06-07 22:47:37 +02:00
if ( isTRUE ( as.numeric ( x [i ] - start ) >= episode_days ) ) {
ind <- ind + 1
indices [ind ] <- i
start <- x [i ]
2018-12-31 01:48:53 +01:00
}
}
result <- rep ( FALSE , length ( x ) )
result [indices ] <- TRUE
return ( result )
}
2019-10-11 17:21:02 +02:00
2018-03-19 20:39:23 +01:00
# Analysis of first isolate ----
2020-05-16 13:05:47 +02:00
x $ other_pat_or_mo <- if_else ( x $ newvar_patient_id == lag ( x $ newvar_patient_id ) &
x $ newvar_genus_species == lag ( x $ newvar_genus_species ) ,
FALSE ,
TRUE )
x $ episode_group <- paste ( x $ newvar_patient_id , x $ newvar_genus_species )
x $ more_than_episode_ago <- unname ( unlist ( lapply ( unique ( x $ episode_group ) ,
function ( g ,
df = x ,
days = episode_days ) {
identify_new_year ( x = df [which ( df $ episode_group == g ) , " newvar_date" ] ,
episode_days = days )
} ) ) )
2019-10-11 17:21:02 +02:00
weighted.notice <- " "
2018-10-23 11:15:05 +02:00
if ( ! is.null ( col_keyantibiotics ) ) {
2019-10-11 17:21:02 +02:00
weighted.notice <- " weighted "
2018-02-21 11:52:31 +01:00
if ( info == TRUE ) {
2019-10-11 17:21:02 +02:00
if ( type == " keyantibiotics" ) {
2020-05-16 13:05:47 +02:00
message ( font_black ( paste0 ( " [Criterion] Base inclusion on key antibiotics, " ,
2019-10-11 17:21:02 +02:00
ifelse ( ignore_I == FALSE , " not " , " " ) ,
" ignoring I" ) ) )
2018-03-19 20:39:23 +01:00
}
2019-10-11 17:21:02 +02:00
if ( type == " points" ) {
2020-05-16 13:05:47 +02:00
message ( font_black ( paste0 ( " [Criterion] Base inclusion on key antibiotics, using points threshold of "
2019-10-11 17:21:02 +02:00
, points_threshold ) ) )
2018-03-19 20:39:23 +01:00
}
2018-02-21 11:52:31 +01:00
}
2018-03-19 21:03:23 +01:00
type_param <- type
2019-08-08 22:39:42 +02:00
2020-05-16 13:05:47 +02:00
x $ other_key_ab <- ! key_antibiotics_equal ( y = x $ newvar_key_ab ,
z = lag ( x $ newvar_key_ab ) ,
type = type_param ,
ignore_I = ignore_I ,
points_threshold = points_threshold ,
info = info )
# with key antibiotics
x $ newvar_first_isolate <- if_else ( x $ newvar_row_index_sorted >= row.start &
x $ newvar_row_index_sorted <= row.end &
x $ newvar_genus_species != " " &
( x $ other_pat_or_mo | x $ more_than_episode_ago | x $ other_key_ab ) ,
TRUE ,
FALSE )
2019-08-08 22:39:42 +02:00
2018-02-21 11:52:31 +01:00
} else {
2018-12-31 01:48:53 +01:00
# no key antibiotics
2020-05-16 13:05:47 +02:00
x $ newvar_first_isolate <- if_else ( x $ newvar_row_index_sorted >= row.start &
x $ newvar_row_index_sorted <= row.end &
x $ newvar_genus_species != " " &
( x $ other_pat_or_mo | x $ more_than_episode_ago ) ,
TRUE ,
FALSE )
2018-02-21 11:52:31 +01:00
}
2019-10-11 17:21:02 +02:00
2018-03-19 20:39:23 +01:00
# first one as TRUE
2020-05-16 13:05:47 +02:00
x [row.start , " newvar_first_isolate" ] <- TRUE
2018-03-19 20:39:23 +01:00
# no tests that should be included, or ICU
2018-10-23 11:15:05 +02:00
if ( ! is.null ( col_testcode ) ) {
2020-05-16 13:05:47 +02:00
x [which ( x [ , col_testcode ] %in% tolower ( testcodes_exclude ) ) , " newvar_first_isolate" ] <- FALSE
2018-02-21 11:52:31 +01:00
}
2020-05-16 13:05:47 +02:00
if ( ! is.null ( col_icu ) ) {
if ( icu_exclude == TRUE ) {
message ( font_black ( " [Criterion] Exclude isolates from ICU.\n" ) )
x [which ( as.logical ( x [ , col_icu , drop = TRUE ] ) ) , " newvar_first_isolate" ] <- FALSE
} else {
message ( font_black ( " [Criterion] Include isolates from ICU.\n" ) )
}
2018-02-21 11:52:31 +01:00
}
2019-08-08 22:39:42 +02:00
decimal.mark <- getOption ( " OutDec" )
big.mark <- ifelse ( decimal.mark != " ," , " ," , " ." )
# handle empty microorganisms
2020-05-16 13:05:47 +02:00
if ( any ( x $ newvar_mo == " UNKNOWN" , na.rm = TRUE ) & info == TRUE ) {
message ( font_blue ( paste0 ( " NOTE: " , ifelse ( include_unknown == TRUE , " Included " , " Excluded " ) ,
format ( sum ( x $ newvar_mo == " UNKNOWN" ) ,
2019-10-11 17:21:02 +02:00
decimal.mark = decimal.mark , big.mark = big.mark ) ,
2020-05-16 13:05:47 +02:00
" isolates with a microbial ID 'UNKNOWN' (column `" , font_bold ( col_mo ) , " `)" ) ) )
2019-08-08 22:39:42 +02:00
}
2020-05-16 13:05:47 +02:00
x [which ( x $ newvar_mo == " UNKNOWN" ) , " newvar_first_isolate" ] <- include_unknown
2019-08-08 22:39:42 +02:00
# exclude all NAs
2020-05-16 13:05:47 +02:00
if ( any ( is.na ( x $ newvar_mo ) ) & info == TRUE ) {
message ( font_blue ( paste0 ( " NOTE: Excluded " , format ( sum ( is.na ( x $ newvar_mo ) ) ,
2019-08-08 22:39:42 +02:00
decimal.mark = decimal.mark , big.mark = big.mark ) ,
2020-05-16 13:05:47 +02:00
" isolates with a microbial ID 'NA' (column `" , font_bold ( col_mo ) , " `)" ) ) )
2019-08-08 22:39:42 +02:00
}
2020-05-16 13:05:47 +02:00
x [which ( is.na ( x $ newvar_mo ) ) , " newvar_first_isolate" ] <- FALSE
2019-08-08 22:39:42 +02:00
# arrange back according to original sorting again
2020-05-16 13:05:47 +02:00
x <- x [order ( x $ newvar_row_index ) , ]
rownames ( x ) <- NULL
2019-08-08 22:39:42 +02:00
2018-02-21 11:52:31 +01:00
if ( info == TRUE ) {
2020-05-16 13:05:47 +02:00
n_found <- base :: sum ( x $ newvar_first_isolate , na.rm = TRUE )
2019-09-30 16:45:36 +02:00
p_found_total <- percentage ( n_found / nrow ( x ) )
p_found_scope <- percentage ( n_found / scope.size )
2018-12-22 22:39:34 +01:00
# mark up number of found
n_found <- base :: format ( n_found , big.mark = big.mark , decimal.mark = decimal.mark )
if ( p_found_total != p_found_scope ) {
msg_txt <- paste0 ( " => Found " ,
2020-05-16 13:05:47 +02:00
font_bold ( paste0 ( n_found , " first " , weighted.notice , " isolates" ) ) ,
2018-12-22 22:39:34 +01:00
" (" , p_found_scope , " within scope and " , p_found_total , " of total)" )
} else {
msg_txt <- paste0 ( " => Found " ,
2020-05-16 13:05:47 +02:00
font_bold ( paste0 ( n_found , " first " , weighted.notice , " isolates" ) ) ,
2018-12-22 22:39:34 +01:00
" (" , p_found_total , " of total)" )
}
2020-05-16 13:05:47 +02:00
message ( font_black ( msg_txt ) )
2018-02-21 11:52:31 +01:00
}
2019-10-11 17:21:02 +02:00
2020-05-16 13:05:47 +02:00
x $ newvar_first_isolate
2019-10-11 17:21:02 +02:00
2018-02-21 11:52:31 +01:00
}
2018-12-22 22:39:34 +01:00
#' @rdname first_isolate
#' @export
2019-05-13 14:56:23 +02:00
filter_first_isolate <- function ( x ,
2018-12-22 22:39:34 +01:00
col_date = NULL ,
col_patient_id = NULL ,
col_mo = NULL ,
... ) {
2020-05-18 10:30:53 +02:00
subset ( x , first_isolate ( x = x ,
2019-05-23 16:58:59 +02:00
col_date = col_date ,
col_patient_id = col_patient_id ,
col_mo = col_mo ,
... ) )
2018-12-22 22:39:34 +01:00
}
#' @rdname first_isolate
#' @export
2019-05-13 14:56:23 +02:00
filter_first_weighted_isolate <- function ( x ,
2018-12-22 22:39:34 +01:00
col_date = NULL ,
col_patient_id = NULL ,
col_mo = NULL ,
col_keyantibiotics = NULL ,
... ) {
2020-05-18 10:30:53 +02:00
y <- x
if ( is.null ( col_keyantibiotics ) ) {
# first try to look for it
col_keyantibiotics <- search_type_in_df ( x = x , type = " keyantibiotics" )
# still NULL? Then create it since we are calling filter_first_WEIGHTED_isolate()
if ( is.null ( col_keyantibiotics ) ) {
y $ keyab <- suppressMessages ( key_antibiotics ( x ,
col_mo = col_mo ,
... ) )
col_keyantibiotics <- " keyab"
}
}
subset ( x , first_isolate ( x = y ,
col_date = col_date ,
col_patient_id = col_patient_id ,
col_mo = col_mo ,
col_keyantibiotics = col_keyantibiotics ,
... ) )
2018-12-22 22:39:34 +01:00
}