year_every = 1, model = "binomial", I_as_R = TRUE,
preserve_measurements = TRUE, info = TRUE)
}
\arguments{
\item{tbl}{table that contains columns \code{col_ab} and \code{col_date}}
\item{col_ab}{column name of \code{tbl} with antimicrobial interpretations (\code{R}, \code{I} and \code{S})}
\item{col_date}{column name of the date, will be used to calculate years}
\item{year_max}{highest year to use in the prediction model, deafults to 15 years after today}
\item{year_every}{unit of sequence between lowest year found in the data and \code{year_max}}
\item{model}{the statistical model of choice. Valid values are \code{"binomial"} (or \code{"binom"} or \code{"logit"}) or \code{"loglin"} or \code{"linear"} (or \code{"lin"}).}
\item{I_as_R}{treat \code{I} as \code{R}}
\item{preserve_measurements}{overwrite predictions of years that are actually available in the data, with the original data. The standard errors of those years will be \code{NA}.}
\item{info}{print textual analysis with the name and \code{\link{summary}} of the model.}
}
\value{
\code{data.frame} with columns \code{year}, \code{probR}, \code{se_min} and \code{se_max}.
}
\description{
Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns \code{se_min} and \code{se_max}.