2019-01-29 00:06:50 +01:00
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --> < html lang = "en" >
< head >
< meta http-equiv = "Content-Type" content = "text/html; charset=UTF-8" >
< meta charset = "utf-8" >
< meta http-equiv = "X-UA-Compatible" content = "IE=edge" >
< meta name = "viewport" content = "width=device-width, initial-scale=1.0" >
< title > How to work with WHONET data • AMR (for R)< / title >
<!-- favicons --> < link rel = "icon" type = "image/png" sizes = "16x16" href = "../favicon-16x16.png" >
< link rel = "icon" type = "image/png" sizes = "32x32" href = "../favicon-32x32.png" >
< link rel = "apple-touch-icon" type = "image/png" sizes = "180x180" href = "../apple-touch-icon.png" >
< link rel = "apple-touch-icon" type = "image/png" sizes = "120x120" href = "../apple-touch-icon-120x120.png" >
< link rel = "apple-touch-icon" type = "image/png" sizes = "76x76" href = "../apple-touch-icon-76x76.png" >
< link rel = "apple-touch-icon" type = "image/png" sizes = "60x60" href = "../apple-touch-icon-60x60.png" >
<!-- jquery --> < script src = "https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js" integrity = "sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=" crossorigin = "anonymous" > < / script > <!-- Bootstrap --> < link href = "https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.3.7/flatly/bootstrap.min.css" rel = "stylesheet" crossorigin = "anonymous" >
2019-10-13 09:31:58 +02:00
< script src = "https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.7/js/bootstrap.min.js" integrity = "sha256-U5ZEeKfGNOja007MMD3YBI0A3OSZOQbeG6z2f2Y0hu8=" crossorigin = "anonymous" > < / script > <!-- Font Awesome icons --> < link rel = "stylesheet" href = "https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.7.1/css/all.min.css" integrity = "sha256-nAmazAk6vS34Xqo0BSrTb+abbtFlgsFK7NKSi6o7Y78=" crossorigin = "anonymous" >
< link rel = "stylesheet" href = "https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.7.1/css/v4-shims.min.css" integrity = "sha256-6qHlizsOWFskGlwVOKuns+D1nB6ssZrHQrNj1wGplHc=" crossorigin = "anonymous" >
<!-- clipboard.js --> < script src = "https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.4/clipboard.min.js" integrity = "sha256-FiZwavyI2V6+EXO1U+xzLG3IKldpiTFf3153ea9zikQ=" crossorigin = "anonymous" > < / script > <!-- headroom.js --> < script src = "https://cdnjs.cloudflare.com/ajax/libs/headroom/0.9.4/headroom.min.js" integrity = "sha256-DJFC1kqIhelURkuza0AvYal5RxMtpzLjFhsnVIeuk+U=" crossorigin = "anonymous" > < / script > < script src = "https://cdnjs.cloudflare.com/ajax/libs/headroom/0.9.4/jQuery.headroom.min.js" integrity = "sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin = "anonymous" > < / script > <!-- pkgdown --> < link href = "../pkgdown.css" rel = "stylesheet" >
2020-02-23 20:56:11 +01:00
< script src = "../pkgdown.js" > < / script > < link href = "../extra.css" rel = "stylesheet" >
2019-01-29 00:06:50 +01:00
< script src = "../extra.js" > < / script > < meta property = "og:title" content = "How to work with WHONET data" >
< meta property = "og:description" content = "" >
< meta property = "og:image" content = "https://msberends.gitlab.io/AMR/logo.png" >
< meta name = "twitter:card" content = "summary" >
<!-- mathjax --> < script src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity = "sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin = "anonymous" > < / script > < script src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity = "sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin = "anonymous" > < / script > <!-- [if lt IE 9]>
< script src = "https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js" > < / script >
< script src = "https://oss.maxcdn.com/respond/1.4.2/respond.min.js" > < / script >
<![endif]-->
< / head >
< body >
< div class = "container template-article" >
< header > < div class = "navbar navbar-default navbar-fixed-top" role = "navigation" >
< div class = "container" >
< div class = "navbar-header" >
< button type = "button" class = "navbar-toggle collapsed" data-toggle = "collapse" data-target = "#navbar" aria-expanded = "false" >
< span class = "sr-only" > Toggle navigation< / span >
< span class = "icon-bar" > < / span >
< span class = "icon-bar" > < / span >
< span class = "icon-bar" > < / span >
< / button >
< span class = "navbar-brand" >
< a class = "navbar-link" href = "../index.html" > AMR (for R)< / a >
2020-02-23 20:56:11 +01:00
< span class = "version label label-default" data-toggle = "tooltip" data-placement = "bottom" title = "Latest development version" > 1.0.1< / span >
2019-01-29 00:06:50 +01:00
< / span >
< / div >
< div id = "navbar" class = "navbar-collapse collapse" >
< ul class = "nav navbar-nav" >
< li >
< a href = "../index.html" >
< span class = "fa fa-home" > < / span >
Home
< / a >
< / li >
< li class = "dropdown" >
< a href = "#" class = "dropdown-toggle" data-toggle = "dropdown" role = "button" aria-expanded = "false" >
< span class = "fa fa-question-circle" > < / span >
How to
< span class = "caret" > < / span >
< / a >
< ul class = "dropdown-menu" role = "menu" >
< li >
< a href = "../articles/AMR.html" >
< span class = "fa fa-directions" > < / span >
Conduct AMR analysis
< / a >
< / li >
< li >
2019-02-14 10:23:51 +01:00
< a href = "../articles/resistance_predict.html" >
2019-01-29 00:06:50 +01:00
< span class = "fa fa-dice" > < / span >
Predict antimicrobial resistance
< / a >
< / li >
2019-05-23 16:58:59 +02:00
< li >
< a href = "../articles/MDR.html" >
< span class = "fa fa-skull-crossbones" > < / span >
Determine multi-drug resistance (MDR)
< / a >
< / li >
2019-01-29 00:06:50 +01:00
< li >
< a href = "../articles/WHONET.html" >
< span class = "fa fa-globe-americas" > < / span >
Work with WHONET data
< / a >
< / li >
2019-02-14 15:18:17 +01:00
< li >
< a href = "../articles/SPSS.html" >
< span class = "fa fa-file-upload" > < / span >
Import data from SPSS/SAS/Stata
< / a >
< / li >
2019-01-29 00:06:50 +01:00
< li >
< a href = "../articles/EUCAST.html" >
< span class = "fa fa-exchange-alt" > < / span >
Apply EUCAST rules
< / a >
< / li >
< li >
2019-02-14 10:23:51 +01:00
< a href = "../reference/mo_property.html" >
2019-01-29 00:06:50 +01:00
< span class = "fa fa-bug" > < / span >
Get properties of a microorganism
< / a >
< / li >
< li >
2019-05-16 21:20:00 +02:00
< a href = "../reference/ab_property.html" >
2019-01-29 00:06:50 +01:00
< span class = "fa fa-capsules" > < / span >
Get properties of an antibiotic
< / a >
< / li >
< li >
< a href = "../articles/benchmarks.html" >
< span class = "fa fa-shipping-fast" > < / span >
Other: benchmarks
< / a >
< / li >
< / ul >
< / li >
< li >
< a href = "../reference/" >
< span class = "fa fa-book-open" > < / span >
Manual
< / a >
< / li >
< li >
< a href = "../authors.html" >
< span class = "fa fa-users" > < / span >
Authors
< / a >
< / li >
< li >
< a href = "../news/" >
< span class = "far fa far fa-newspaper" > < / span >
Changelog
< / a >
< / li >
< / ul >
< ul class = "nav navbar-nav navbar-right" >
< li >
< a href = "https://gitlab.com/msberends/AMR" >
< span class = "fab fa fab fa-gitlab" > < / span >
Source Code
< / a >
< / li >
< li >
< a href = "../LICENSE-text.html" >
< span class = "fa fa-book" > < / span >
Licence
< / a >
< / li >
< / ul >
< / div >
<!-- /.nav - collapse -->
< / div >
<!-- /.container -->
< / div >
<!-- /.navbar -->
2019-10-13 09:31:58 +02:00
2019-01-29 00:06:50 +01:00
< / header > < div class = "row" >
< div class = "col-md-9 contents" >
< div class = "page-header toc-ignore" >
< h1 > How to work with WHONET data< / h1 >
< h4 class = "author" > Matthijs S. Berends< / h4 >
2020-02-23 20:56:11 +01:00
< h4 class = "date" > 23 February 2020< / h4 >
2019-01-29 00:06:50 +01:00
< div class = "hidden name" > < code > WHONET.Rmd< / code > < / div >
< / div >
2019-11-09 11:33:22 +01:00
< div id = "import-of-data" class = "section level3" >
< h3 class = "hasAnchor" >
< a href = "#import-of-data" class = "anchor" > < / a > Import of data< / h3 >
2019-01-29 20:20:09 +01:00
< p > This tutorial assumes you already imported the WHONET data with e.g. the < a href = "https://readxl.tidyverse.org/" > < code > readxl< / code > package< / a > . In RStudio, this can be done using the menu button ‘ Import Dataset’ in the tab ‘ Environment’ . Choose the option ‘ From Excel’ and select your exported file. Make sure date fields are imported correctly.< / p >
< p > An example syntax could look like this:< / p >
2020-02-23 20:56:11 +01:00
< div class = "sourceCode" id = "cb1" > < pre class = "sourceCode r" > < code class = "sourceCode r" > < span id = "cb1-1" > < a href = "#cb1-1" > < / a > < span class = "kw" > < a href = "https://rdrr.io/r/base/library.html" > library< / a > < / span > (readxl)< / span >
< span id = "cb1-2" > < a href = "#cb1-2" > < / a > data < -< span class = "st" > < / span > < span class = "kw" > < a href = "https://readxl.tidyverse.org/reference/read_excel.html" > read_excel< / a > < / span > (< span class = "dt" > path =< / span > < span class = "st" > "path/to/your/file.xlsx"< / span > )< / span > < / code > < / pre > < / div >
2019-06-03 17:45:22 +02:00
< p > This package comes with an < a href = "https://msberends.gitlab.io/AMR/reference/WHONET.html" > example data set < code > WHONET< / code > < / a > . We will use it for this analysis.< / p >
2019-01-29 20:20:09 +01:00
< / div >
2019-11-09 11:33:22 +01:00
< div id = "preparation" class = "section level3" >
< h3 class = "hasAnchor" >
< a href = "#preparation" class = "anchor" > < / a > Preparation< / h3 >
2019-01-29 20:20:09 +01:00
< p > First, load the relevant packages if you did not yet did this. I use the tidyverse for all of my analyses. All of them. If you don’ t know it yet, I suggest you read about it on their website: < a href = "https://www.tidyverse.org/" class = "uri" > https://www.tidyverse.org/< / a > .< / p >
2020-02-23 20:56:11 +01:00
< div class = "sourceCode" id = "cb2" > < pre class = "sourceCode r" > < code class = "sourceCode r" > < span id = "cb2-1" > < a href = "#cb2-1" > < / a > < span class = "kw" > < a href = "https://rdrr.io/r/base/library.html" > library< / a > < / span > (dplyr) < span class = "co" > # part of tidyverse< / span > < / span >
< span id = "cb2-2" > < a href = "#cb2-2" > < / a > < span class = "kw" > < a href = "https://rdrr.io/r/base/library.html" > library< / a > < / span > (ggplot2) < span class = "co" > # part of tidyverse< / span > < / span >
< span id = "cb2-3" > < a href = "#cb2-3" > < / a > < span class = "kw" > < a href = "https://rdrr.io/r/base/library.html" > library< / a > < / span > (AMR) < span class = "co" > # this package< / span > < / span > < / code > < / pre > < / div >
2019-01-29 20:20:09 +01:00
< p > We will have to transform some variables to simplify and automate the analysis:< / p >
< ul >
2019-10-13 09:31:58 +02:00
< li > Microorganisms should be transformed to our own microorganism IDs (called an < code > mo< / code > ) using < a href = "https://msberends.gitlab.io/AMR/reference/catalogue_of_life" > our Catalogue of Life reference data set< / a > , which contains all ~70,000 microorganisms from the taxonomic kingdoms Bacteria, Fungi and Protozoa. We do the tranformation with < code > < a href = "../reference/as.mo.html" > as.mo()< / a > < / code > . This function also recognises almost all WHONET abbreviations of microorganisms.< / li >
2019-01-29 20:20:09 +01:00
< li > Antimicrobial results or interpretations have to be clean and valid. In other words, they should only contain values < code > "S"< / code > , < code > "I"< / code > or < code > "R"< / code > . That is exactly where the < code > < a href = "../reference/as.rsi.html" > as.rsi()< / a > < / code > function is for.< / li >
< / ul >
2020-02-23 20:56:11 +01:00
< div class = "sourceCode" id = "cb3" > < pre class = "sourceCode r" > < code class = "sourceCode r" > < span id = "cb3-1" > < a href = "#cb3-1" > < / a > < span class = "co" > # transform variables< / span > < / span >
< span id = "cb3-2" > < a href = "#cb3-2" > < / a > data < -< span class = "st" > < / span > WHONET < span class = "op" > %> %< / span > < / span >
< span id = "cb3-3" > < a href = "#cb3-3" > < / a > < span class = "st" > < / span > < span class = "co" > # get microbial ID based on given organism< / span > < / span >
< span id = "cb3-4" > < a href = "#cb3-4" > < / a > < span class = "st" > < / span > < span class = "kw" > < a href = "https://dplyr.tidyverse.org/reference/mutate.html" > mutate< / a > < / span > (< span class = "dt" > mo =< / span > < span class = "kw" > < a href = "../reference/as.mo.html" > as.mo< / a > < / span > (Organism)) < span class = "op" > %> %< / span > < span class = "st" > < / span > < / span >
< span id = "cb3-5" > < a href = "#cb3-5" > < / a > < span class = "st" > < / span > < span class = "co" > # transform everything from "AMP_ND10" to "CIP_EE" to the new `rsi` class< / span > < / span >
< span id = "cb3-6" > < a href = "#cb3-6" > < / a > < span class = "st" > < / span > < span class = "kw" > < a href = "https://dplyr.tidyverse.org/reference/mutate_all.html" > mutate_at< / a > < / span > (< span class = "kw" > < a href = "https://dplyr.tidyverse.org/reference/vars.html" > vars< / a > < / span > (AMP_ND10< span class = "op" > :< / span > CIP_EE), as.rsi)< / span > < / code > < / pre > < / div >
2019-07-29 13:33:48 +02:00
< p > No errors or warnings, so all values are transformed succesfully.< / p >
2019-11-09 11:33:22 +01:00
< p > We also created a package dedicated to data cleaning and checking, called the < code > cleaner< / code > package. It gets automatically installed with the < code > AMR< / code > package. For its < code > < a href = "https://rdrr.io/pkg/cleaner/man/freq.html" > freq()< / a > < / code > function to create frequency tables, you don’ t even need to load it yourself as it is available through the < code > AMR< / code > package as well.< / p >
2019-07-29 13:33:48 +02:00
< p > So let’ s check our data, with a couple of frequency tables:< / p >
2020-02-23 20:56:11 +01:00
< div class = "sourceCode" id = "cb4" > < pre class = "sourceCode r" > < code class = "sourceCode r" > < span id = "cb4-1" > < a href = "#cb4-1" > < / a > < span class = "co" > # our newly created `mo` variable, put in the mo_name() function< / span > < / span >
< span id = "cb4-2" > < a href = "#cb4-2" > < / a > data < span class = "op" > %> %< / span > < span class = "st" > < / span > < span class = "kw" > < a href = "https://rdrr.io/pkg/cleaner/man/freq.html" > freq< / a > < / span > (< span class = "kw" > < a href = "../reference/mo_property.html" > mo_name< / a > < / span > (mo), < span class = "dt" > nmax =< / span > < span class = "dv" > 10< / span > )< / span > < / code > < / pre > < / div >
2019-07-29 13:33:48 +02:00
< p > < strong > Frequency table< / strong > < / p >
2019-11-29 19:43:23 +01:00
< p > Class: character< br >
2020-02-23 20:56:11 +01:00
Length: 500< br >
Available: 500 (100%, NA: 0 = 0%)< br >
2019-03-27 11:22:36 +01:00
Unique: 39< / p >
2019-11-29 19:43:23 +01:00
< p > Shortest: 11< br >
Longest: 40< / p >
2019-01-29 20:20:09 +01:00
< table class = "table" >
< thead > < tr class = "header" >
< th align = "left" > < / th >
< th align = "left" > Item< / th >
< th align = "right" > Count< / th >
< th align = "right" > Percent< / th >
< th align = "right" > Cum. Count< / th >
< th align = "right" > Cum. Percent< / th >
< / tr > < / thead >
< tbody >
< tr class = "odd" >
< td align = "left" > 1< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Escherichia coli< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 245< / td >
< td align = "right" > 49.0%< / td >
< td align = "right" > 245< / td >
< td align = "right" > 49.0%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "even" >
< td align = "left" > 2< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Coagulase-negative Staphylococcus (CoNS)< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 74< / td >
< td align = "right" > 14.8%< / td >
< td align = "right" > 319< / td >
< td align = "right" > 63.8%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "odd" >
< td align = "left" > 3< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Staphylococcus epidermidis< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 38< / td >
< td align = "right" > 7.6%< / td >
< td align = "right" > 357< / td >
< td align = "right" > 71.4%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "even" >
< td align = "left" > 4< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Streptococcus pneumoniae< / td >
2019-01-29 20:20:09 +01:00
< td align = "right" > 31< / td >
< td align = "right" > 6.2%< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 388< / td >
< td align = "right" > 77.6%< / td >
< / tr >
< tr class = "odd" >
< td align = "left" > 5< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Staphylococcus hominis< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 21< / td >
< td align = "right" > 4.2%< / td >
< td align = "right" > 409< / td >
< td align = "right" > 81.8%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "even" >
< td align = "left" > 6< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Proteus mirabilis< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 9< / td >
< td align = "right" > 1.8%< / td >
< td align = "right" > 418< / td >
< td align = "right" > 83.6%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "odd" >
< td align = "left" > 7< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Enterococcus faecium< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 8< / td >
< td align = "right" > 1.6%< / td >
< td align = "right" > 426< / td >
< td align = "right" > 85.2%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "even" >
< td align = "left" > 8< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Staphylococcus capitis< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 8< / td >
< td align = "right" > 1.6%< / td >
< td align = "right" > 434< / td >
< td align = "right" > 86.8%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "odd" >
< td align = "left" > 9< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Enterobacter cloacae< / td >
2019-03-15 13:57:25 +01:00
< td align = "right" > 5< / td >
< td align = "right" > 1.0%< / td >
2019-03-27 11:22:36 +01:00
< td align = "right" > 439< / td >
< td align = "right" > 87.8%< / td >
< / tr >
< tr class = "even" >
< td align = "left" > 10< / td >
2019-11-29 19:43:23 +01:00
< td align = "left" > Enterococcus columbae< / td >
2019-03-27 11:22:36 +01:00
< td align = "right" > 4< / td >
< td align = "right" > 0.8%< / td >
< td align = "right" > 443< / td >
< td align = "right" > 88.6%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< / tbody >
< / table >
2019-10-13 09:31:58 +02:00
< p > (omitted 29 entries, n = 57 [11.40%])< / p >
2020-02-23 20:56:11 +01:00
< div class = "sourceCode" id = "cb5" > < pre class = "sourceCode r" > < code class = "sourceCode r" > < span id = "cb5-1" > < a href = "#cb5-1" > < / a > < span class = "co" > # our transformed antibiotic columns< / span > < / span >
< span id = "cb5-2" > < a href = "#cb5-2" > < / a > < span class = "co" > # amoxicillin/clavulanic acid (J01CR02) as an example< / span > < / span >
< span id = "cb5-3" > < a href = "#cb5-3" > < / a > data < span class = "op" > %> %< / span > < span class = "st" > < / span > < span class = "kw" > < a href = "https://rdrr.io/pkg/cleaner/man/freq.html" > freq< / a > < / span > (AMC_ND2)< / span > < / code > < / pre > < / div >
2019-07-29 13:33:48 +02:00
< p > < strong > Frequency table< / strong > < / p >
2019-05-28 16:50:40 +02:00
< p > Class: factor > ordered > rsi (numeric)< br >
2020-02-23 20:56:11 +01:00
Length: 500< br >
2019-05-28 16:50:40 +02:00
Levels: 3: S < I < R< br >
2020-02-23 20:56:11 +01:00
Available: 481 (96.2%, NA: 19 = 3.8%)< br >
2019-01-30 16:00:55 +01:00
Unique: 3< / p >
2019-07-29 13:33:48 +02:00
< p > %SI: 78.6%< / p >
2019-01-29 20:20:09 +01:00
< table class = "table" >
< thead > < tr class = "header" >
< th align = "left" > < / th >
< th align = "left" > Item< / th >
< th align = "right" > Count< / th >
< th align = "right" > Percent< / th >
< th align = "right" > Cum. Count< / th >
< th align = "right" > Cum. Percent< / th >
< / tr > < / thead >
< tbody >
< tr class = "odd" >
< td align = "left" > 1< / td >
< td align = "left" > S< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 356< / td >
2019-10-13 09:31:58 +02:00
< td align = "right" > 74.01%< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 356< / td >
2019-10-13 09:31:58 +02:00
< td align = "right" > 74.01%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "even" >
< td align = "left" > 2< / td >
< td align = "left" > R< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 103< / td >
2019-10-13 09:31:58 +02:00
< td align = "right" > 21.41%< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 459< / td >
2019-10-13 09:31:58 +02:00
< td align = "right" > 95.43%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< tr class = "odd" >
< td align = "left" > 3< / td >
< td align = "left" > I< / td >
< td align = "right" > 22< / td >
2019-10-13 09:31:58 +02:00
< td align = "right" > 4.57%< / td >
2019-02-09 22:16:24 +01:00
< td align = "right" > 481< / td >
2019-10-13 09:31:58 +02:00
< td align = "right" > 100.00%< / td >
2019-01-29 20:20:09 +01:00
< / tr >
< / tbody >
< / table >
< / div >
2019-11-09 11:33:22 +01:00
< div id = "a-first-glimpse-at-results" class = "section level3" >
< h3 class = "hasAnchor" >
< a href = "#a-first-glimpse-at-results" class = "anchor" > < / a > A first glimpse at results< / h3 >
2019-11-29 19:43:23 +01:00
< p > An easy < code > ggplot< / code > will already give a lot of information, using the included < code > < a href = "../reference/ggplot_rsi.html" > ggplot_rsi()< / a > < / code > function:< / p >
2020-02-23 20:56:11 +01:00
< div class = "sourceCode" id = "cb6" > < pre class = "sourceCode r" > < code class = "sourceCode r" > < span id = "cb6-1" > < a href = "#cb6-1" > < / a > data < span class = "op" > %> %< / span > < / span >
< span id = "cb6-2" > < a href = "#cb6-2" > < / a > < span class = "st" > < / span > < span class = "kw" > < a href = "https://dplyr.tidyverse.org/reference/group_by.html" > group_by< / a > < / span > (Country) < span class = "op" > %> %< / span > < / span >
< span id = "cb6-3" > < a href = "#cb6-3" > < / a > < span class = "st" > < / span > < span class = "kw" > < a href = "https://dplyr.tidyverse.org/reference/select.html" > select< / a > < / span > (Country, AMP_ND2, AMC_ED20, CAZ_ED10, CIP_ED5) < span class = "op" > %> %< / span > < / span >
< span id = "cb6-4" > < a href = "#cb6-4" > < / a > < span class = "st" > < / span > < span class = "kw" > < a href = "../reference/ggplot_rsi.html" > ggplot_rsi< / a > < / span > (< span class = "dt" > translate_ab =< / span > < span class = "st" > 'ab'< / span > , < span class = "dt" > facet =< / span > < span class = "st" > "Country"< / span > , < span class = "dt" > datalabels =< / span > < span class = "ot" > FALSE< / span > )< / span > < / code > < / pre > < / div >
2019-11-29 19:43:23 +01:00
< p > < img src = "WHONET_files/figure-html/unnamed-chunk-7-1.png" width = "720" > < / p >
2019-01-29 20:20:09 +01:00
< / div >
2019-01-29 00:06:50 +01:00
< / div >
< div class = "col-md-3 hidden-xs hidden-sm" id = "sidebar" >
2019-10-13 09:31:58 +02:00
2019-01-29 00:06:50 +01:00
< / div >
< / div >
2019-10-13 09:31:58 +02:00
2019-01-29 00:06:50 +01:00
< footer > < div class = "copyright" >
2020-01-26 20:38:54 +01:00
< p > Developed by < a href = "https://www.rug.nl/staff/m.s.berends/" > Matthijs S. Berends< / a > , < a href = "https://www.rug.nl/staff/c.f.luz/" > Christian F. Luz< / a > , < a href = "https://www.rug.nl/staff/a.w.friedrich/" > Alexander W. Friedrich< / a > , < a href = "https://www.rug.nl/staff/b.sinha/" > Bhanu N. M. Sinha< / a > , < a href = "https://www.rug.nl/staff/c.j.albers/" > Casper J. Albers< / a > , < a href = "https://www.rug.nl/staff/c.glasner/" > Corinna Glasner< / a > .< / p >
2019-01-29 00:06:50 +01:00
< / div >
< div class = "pkgdown" >
2019-10-13 09:31:58 +02:00
< p > Site built with < a href = "https://pkgdown.r-lib.org/" > pkgdown< / a > 1.4.1.< / p >
2019-01-29 00:06:50 +01:00
< / div >
2019-10-13 09:31:58 +02:00
2019-01-29 00:06:50 +01:00
< / footer >
< / div >
2020-02-23 20:56:11 +01:00
< / body >
2019-01-29 00:06:50 +01:00
< / html >