2018-12-15 22:40:07 +01:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
# https://gitlab.com/msberends/AMR #
2018-12-15 22:40:07 +01:00
# #
# LICENCE #
2019-01-02 23:24:07 +01:00
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
2018-12-15 22:40:07 +01:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# This R package was created for academic research and was publicly #
# released in the hope that it will be useful, but it comes WITHOUT #
# ANY WARRANTY OR LIABILITY. #
2019-04-05 18:47:39 +02:00
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
2018-12-15 22:40:07 +01:00
# ==================================================================== #
#' Age in years of individuals
#'
2019-01-12 11:06:58 +01:00
#' Calculates age in years based on a reference date, which is the sytem date at default.
2018-12-22 22:39:34 +01:00
#' @param x date(s), will be coerced with \code{\link{as.POSIXlt}}
2019-01-12 11:06:58 +01:00
#' @param reference reference date(s) (defaults to today), will be coerced with \code{\link{as.POSIXlt}} and cannot be lower than \code{x}
2019-06-03 17:45:22 +02:00
#' @param exact a logical to indicate whether age calculation should be exact, i.e. with decimals. It divides the number of days of \href{https://en.wikipedia.org/wiki/Year-to-date}{year-to-date} (YTD) of \code{x} by the number of days in a year of \code{reference} (either 365 or 366).
2019-09-02 15:17:41 +02:00
#' @param na.rm a logical to indicate whether missing values should be removed
2019-05-31 14:25:11 +02:00
#' @return An integer (no decimals) if \code{exact = FALSE}, a double (with decimals) otherwise
2019-09-02 15:17:41 +02:00
#' @seealso To split ages into groups, use the \code{\link{age_groups}} function.
2018-12-15 22:40:07 +01:00
#' @importFrom dplyr if_else
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-12-15 22:40:07 +01:00
#' @export
2019-01-25 13:18:41 +01:00
#' @examples
2019-05-31 14:25:11 +02:00
#' # 10 random birth dates
#' df <- data.frame(birth_date = Sys.Date() - runif(10) * 25000)
#' # add ages
2019-01-25 13:18:41 +01:00
#' df$age <- age(df$birth_date)
2019-05-31 14:25:11 +02:00
#' # add exact ages
#' df$age_exact <- age(df$birth_date, exact = TRUE)
#'
#' df
2019-09-02 15:17:41 +02:00
age <- function ( x , reference = Sys.Date ( ) , exact = FALSE , na.rm = FALSE ) {
2018-12-22 22:39:34 +01:00
if ( length ( x ) != length ( reference ) ) {
if ( length ( reference ) == 1 ) {
reference <- rep ( reference , length ( x ) )
2018-12-15 22:40:07 +01:00
} else {
2018-12-22 22:39:34 +01:00
stop ( " `x` and `reference` must be of same length, or `reference` must be of length 1." )
2018-12-15 22:40:07 +01:00
}
}
2019-05-31 20:25:57 +02:00
x <- as.POSIXlt ( x )
reference <- as.POSIXlt ( reference )
2019-01-25 13:18:41 +01:00
2018-12-15 22:40:07 +01:00
# from https://stackoverflow.com/a/25450756/4575331
2019-01-25 13:18:41 +01:00
years_gap <- reference $ year - x $ year
2018-12-22 22:39:34 +01:00
ages <- if_else ( reference $ mon < x $ mon | ( reference $ mon == x $ mon & reference $ mday < x $ mday ) ,
2019-01-12 11:06:58 +01:00
as.integer ( years_gap - 1 ) ,
as.integer ( years_gap ) )
2019-01-25 13:18:41 +01:00
2019-05-31 14:25:11 +02:00
# add decimals
if ( exact == TRUE ) {
# get dates of `x` when `x` would have the year of `reference`
2019-05-31 20:25:57 +02:00
x_in_reference_year <- as.POSIXlt ( paste0 ( format ( reference , " %Y" ) , format ( x , " -%m-%d" ) ) )
2019-05-31 14:25:11 +02:00
# get differences in days
2019-05-31 20:25:57 +02:00
n_days_x_rest <- as.double ( difftime ( reference , x_in_reference_year , units = " days" ) )
2019-05-31 14:25:11 +02:00
# get numbers of days the years of `reference` has for a reliable denominator
2019-05-31 20:25:57 +02:00
n_days_reference_year <- as.POSIXlt ( paste0 ( format ( reference , " %Y" ) , " -12-31" ) ) $ yday + 1
2019-05-31 14:25:11 +02:00
# add decimal parts of year
2019-05-31 20:25:57 +02:00
mod <- n_days_x_rest / n_days_reference_year
# negative mods are cases where `x_in_reference_year` > `reference` - so 'add' a year
mod [mod < 0 ] <- 1 + mod [mod < 0 ]
# and finally add to ages
ages <- ages + mod
2019-05-31 14:25:11 +02:00
}
2019-01-25 13:18:41 +01:00
if ( any ( ages < 0 , na.rm = TRUE ) ) {
2019-05-31 14:25:11 +02:00
ages [ages < 0 ] <- NA
2019-05-29 00:36:48 +02:00
warning ( " NAs introduced for ages below 0." )
2019-01-25 13:18:41 +01:00
}
if ( any ( ages > 120 , na.rm = TRUE ) ) {
2019-05-31 14:25:11 +02:00
warning ( " Some ages are above 120." )
2018-12-15 22:40:07 +01:00
}
2019-09-02 15:17:41 +02:00
if ( isTRUE ( na.rm ) ) {
ages <- ages [ ! is.na ( ages ) ]
}
2019-01-25 13:18:41 +01:00
2018-12-15 22:40:07 +01:00
ages
}
2018-12-16 22:45:12 +01:00
#' Split ages into age groups
2018-12-15 22:40:07 +01:00
#'
2018-12-22 22:39:34 +01:00
#' Split ages into age groups defined by the \code{split} parameter. This allows for easier demographic (antimicrobial resistance) analysis.
2018-12-15 22:40:07 +01:00
#' @param x age, e.g. calculated with \code{\link{age}}
2019-04-11 00:54:48 +02:00
#' @param split_at values to split \code{x} at, defaults to age groups 0-11, 12-24, 25-54, 55-74 and 75+. See Details.
2019-09-02 15:17:41 +02:00
#' @param na.rm a logical to indicate whether missing values should be removed
2018-12-15 22:40:07 +01:00
#' @details To split ages, the input can be:
#' \itemize{
2019-01-12 11:06:58 +01:00
#' \item{A numeric vector. A vector of e.g. \code{c(10, 20)} will split on 0-9, 10-19 and 20+. A value of only \code{50} will split on 0-49 and 50+.
2019-04-11 00:54:48 +02:00
#' The default is to split on young children (0-11), youth (12-24), young adults (25-54), middle-aged adults (55-74) and elderly (75+).}
2018-12-15 22:40:07 +01:00
#' \item{A character:}
#' \itemize{
2019-05-29 00:36:48 +02:00
#' \item{\code{"children"} or \code{"kids"}, equivalent of: \code{c(0, 1, 2, 4, 6, 13, 18)}. This will split on 0, 1, 2-3, 4-5, 6-12, 13-17 and 18+.}
2019-04-09 10:34:40 +02:00
#' \item{\code{"elderly"} or \code{"seniors"}, equivalent of: \code{c(65, 75, 85)}. This will split on 0-64, 65-74, 75-84, 85+.}
#' \item{\code{"fives"}, equivalent of: \code{1:20 * 5}. This will split on 0-4, 5-9, 10-14, ..., 90-94, 95-99, 100+.}
#' \item{\code{"tens"}, equivalent of: \code{1:10 * 10}. This will split on 0-9, 10-19, 20-29, ... 80-89, 90-99, 100+.}
2018-12-15 22:40:07 +01:00
#' }
#' }
2018-12-16 22:45:12 +01:00
#' @keywords age_group age
2018-12-15 22:40:07 +01:00
#' @return Ordered \code{\link{factor}}
2019-09-02 15:17:41 +02:00
#' @seealso To determine ages, based on one or more reference dates, use the \code{\link{age}} function.
2018-12-15 22:40:07 +01:00
#' @export
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-12-15 22:40:07 +01:00
#' @examples
#' ages <- c(3, 8, 16, 54, 31, 76, 101, 43, 21)
#'
2018-12-16 22:45:12 +01:00
#' # split into 0-49 and 50+
2018-12-15 22:40:07 +01:00
#' age_groups(ages, 50)
#'
2018-12-16 22:45:12 +01:00
#' # split into 0-19, 20-49 and 50+
#' age_groups(ages, c(20, 50))
2018-12-15 22:40:07 +01:00
#'
2018-12-16 22:45:12 +01:00
#' # split into groups of ten years
2019-04-09 10:34:40 +02:00
#' age_groups(ages, 1:10 * 10)
2018-12-16 22:45:12 +01:00
#' age_groups(ages, split_at = "tens")
2018-12-15 22:40:07 +01:00
#'
2018-12-16 22:45:12 +01:00
#' # split into groups of five years
2019-04-09 10:34:40 +02:00
#' age_groups(ages, 1:20 * 5)
2018-12-16 22:45:12 +01:00
#' age_groups(ages, split_at = "fives")
2018-12-15 22:40:07 +01:00
#'
2018-12-16 22:45:12 +01:00
#' # split specifically for children
2018-12-15 22:40:07 +01:00
#' age_groups(ages, "children")
2018-12-16 22:45:12 +01:00
#' # same:
#' age_groups(ages, c(1, 2, 4, 6, 13, 17))
2018-12-15 22:40:07 +01:00
#'
2019-11-03 22:41:29 +01:00
#' \dontrun{
2018-12-15 22:40:07 +01:00
#' # resistance of ciprofloxacine per age group
2018-12-16 09:50:14 +01:00
#' library(dplyr)
2019-08-27 16:45:42 +02:00
#' example_isolates %>%
2019-05-30 08:51:38 +02:00
#' filter_first_isolate() %>%
2019-05-29 00:36:48 +02:00
#' filter(mo == as.mo("E. coli")) %>%
2018-12-15 22:40:07 +01:00
#' group_by(age_group = age_groups(age)) %>%
2019-05-29 00:36:48 +02:00
#' select(age_group, CIP) %>%
2018-12-15 22:40:07 +01:00
#' ggplot_rsi(x = "age_group")
2019-11-03 22:41:29 +01:00
#' }
2019-09-02 15:17:41 +02:00
age_groups <- function ( x , split_at = c ( 12 , 25 , 55 , 75 ) , na.rm = FALSE ) {
2019-06-13 14:28:46 +02:00
if ( ! is.numeric ( x ) ) {
stop ( " `x` and must be numeric, not a " , paste0 ( class ( x ) , collapse = " /" ) , " ." )
}
2019-09-12 15:08:53 +02:00
if ( any ( x < 0 , na.rm = TRUE ) ) {
x [x < 0 ] <- NA
warning ( " NAs introduced for ages below 0." )
}
2018-12-15 22:40:07 +01:00
if ( is.character ( split_at ) ) {
2018-12-16 22:45:12 +01:00
split_at <- split_at [1L ]
2019-05-29 00:36:48 +02:00
if ( split_at %like% " ^(child|kid|junior)" ) {
2018-12-15 22:40:07 +01:00
split_at <- c ( 0 , 1 , 2 , 4 , 6 , 13 , 18 )
2018-12-16 22:45:12 +01:00
} else if ( split_at %like% " ^(elder|senior)" ) {
2019-04-09 10:34:40 +02:00
split_at <- c ( 65 , 75 , 85 )
2018-12-16 22:45:12 +01:00
} else if ( split_at %like% " ^five" ) {
2019-04-09 10:34:40 +02:00
split_at <- 1 : 20 * 5
2018-12-16 22:45:12 +01:00
} else if ( split_at %like% " ^ten" ) {
2019-04-09 10:34:40 +02:00
split_at <- 1 : 10 * 10
2018-12-15 22:40:07 +01:00
}
}
2019-06-13 14:28:46 +02:00
split_at <- sort ( unique ( as.integer ( split_at ) ) )
2018-12-15 22:40:07 +01:00
if ( ! split_at [1 ] == 0 ) {
2019-05-29 00:36:48 +02:00
# add base number 0
2018-12-15 22:40:07 +01:00
split_at <- c ( 0 , split_at )
}
2019-05-29 00:36:48 +02:00
split_at <- split_at [ ! is.na ( split_at ) ]
2018-12-15 22:40:07 +01:00
if ( length ( split_at ) == 1 ) {
2019-05-29 00:36:48 +02:00
# only 0 is available
2018-12-15 22:40:07 +01:00
stop ( " invalid value for `split_at`." )
}
# turn input values to 'split_at' indices
y <- x
2018-12-16 22:45:12 +01:00
labs <- split_at
2019-10-11 17:21:02 +02:00
for ( i in seq_len ( length ( split_at ) ) ) {
2018-12-15 22:40:07 +01:00
y [x >= split_at [i ] ] <- i
2018-12-16 22:45:12 +01:00
# create labels
2019-01-12 11:06:58 +01:00
labs [i - 1 ] <- paste0 ( unique ( c ( split_at [i - 1 ] , split_at [i ] - 1 ) ) , collapse = " -" )
2018-12-15 22:40:07 +01:00
}
# last category
labs [length ( labs ) ] <- paste0 ( split_at [length ( split_at ) ] , " +" )
2019-09-02 15:17:41 +02:00
agegroups <- factor ( labs [y ] , levels = labs , ordered = TRUE )
if ( isTRUE ( na.rm ) ) {
agegroups <- agegroups [ ! is.na ( agegroups ) ]
}
agegroups
2018-12-15 22:40:07 +01:00
}