2018-08-10 15:01:05 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
# https://gitlab.com/msberends/AMR #
2018-08-10 15:01:05 +02:00
# #
# LICENCE #
2019-01-02 23:24:07 +01:00
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
2018-08-10 15:01:05 +02:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# This R package was created for academic research and was publicly #
# released in the hope that it will be useful, but it comes WITHOUT #
# ANY WARRANTY OR LIABILITY. #
# Visit our website for more info: https://msberends.gitab.io/AMR. #
2018-08-10 15:01:05 +02:00
# ==================================================================== #
#' Predict antimicrobial resistance
#'
#' Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns \code{se_min} and \code{se_max}. See Examples for a real live example.
#' @inheritParams first_isolate
2019-01-15 12:45:24 +01:00
#' @inheritParams graphics::plot
2018-08-10 15:01:05 +02:00
#' @param col_ab column name of \code{tbl} with antimicrobial interpretations (\code{R}, \code{I} and \code{S})
2019-01-15 12:45:24 +01:00
#' @param col_date column name of the date, will be used to calculate years if this column doesn't consist of years already, defaults to the first column of with a date class
2019-01-12 19:31:30 +01:00
#' @param year_min lowest year to use in the prediction model, dafaults to the lowest year in \code{col_date}
#' @param year_max highest year to use in the prediction model, defaults to 10 years after today
2018-08-10 15:01:05 +02:00
#' @param year_every unit of sequence between lowest year found in the data and \code{year_max}
#' @param minimum minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model.
2019-02-09 22:16:24 +01:00
#' @param model the statistical model of choice. Defaults to a generalised linear regression model with binomial distribution, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance. See Details for valid options.
2019-01-12 19:31:30 +01:00
#' @param I_as_R a logical to indicate whether values \code{I} should be treated as \code{R}
#' @param preserve_measurements a logical to indicate whether predictions of years that are actually available in the data should be overwritten by the original data. The standard errors of those years will be \code{NA}.
#' @param info a logical to indicate whether textual analysis should be printed with the name and \code{\link{summary}} of the statistical model.
2019-01-15 16:38:54 +01:00
#' @param main title of the plot
2019-02-11 10:27:10 +01:00
#' @param ribbon a logical to indicate whether a ribbon should be shown (default) or error bars
2019-02-09 22:16:24 +01:00
#' @details Valid options for the statistical model are:
#' \itemize{
#' \item{\code{"binomial"} or \code{"binom"} or \code{"logit"}: a generalised linear regression model with binomial distribution}
#' \item{\code{"loglin"} or \code{"poisson"}: a generalised log-linear regression model with poisson distribution}
#' \item{\code{"lin"} or \code{"linear"}: a linear regression model}
#' }
2019-01-15 12:45:24 +01:00
#' @return \code{data.frame} with extra class \code{"resistance_predict"} with columns:
2018-08-10 15:01:05 +02:00
#' \itemize{
#' \item{\code{year}}
#' \item{\code{value}, the same as \code{estimated} when \code{preserve_measurements = FALSE}, and a combination of \code{observed} and \code{estimated} otherwise}
2019-01-12 19:31:30 +01:00
#' \item{\code{se_min}, the lower bound of the standard error with a minimum of \code{0} (so the standard error will never go below 0\%)}
#' \item{\code{se_max} the upper bound of the standard error with a maximum of \code{1} (so the standard error will never go above 100\%)}
#' \item{\code{observations}, the total number of available observations in that year, i.e. S + I + R}
#' \item{\code{observed}, the original observed resistant percentages}
#' \item{\code{estimated}, the estimated resistant percentages, calculated by the model}
2018-08-10 15:01:05 +02:00
#' }
2019-02-11 10:27:10 +01:00
#' Furthermore, the model itself is available as an attribute: \code{attributes(x)$model}, see Examples.
2018-08-10 15:01:05 +02:00
#' @seealso The \code{\link{portion}} function to calculate resistance, \cr \code{\link{lm}} \code{\link{glm}}
#' @rdname resistance_predict
#' @export
#' @importFrom stats predict glm lm
2019-01-15 16:38:54 +01:00
#' @importFrom dplyr %>% pull mutate mutate_at n group_by_at summarise filter filter_at all_vars n_distinct arrange case_when n_groups transmute
2019-01-02 23:24:07 +01:00
#' @inheritSection AMR Read more on our website!
2018-08-10 15:01:05 +02:00
#' @examples
2019-01-15 12:45:24 +01:00
#' x <- resistance_predict(septic_patients, col_ab = "amox", year_min = 2010)
#' plot(x)
#' ggplot_rsi_predict(x)
2018-08-10 15:01:05 +02:00
#'
2019-01-15 12:45:24 +01:00
#' # use dplyr so you can actually read it:
2018-08-10 15:01:05 +02:00
#' library(dplyr)
2019-01-15 12:45:24 +01:00
#' x <- septic_patients %>%
#' filter_first_isolate() %>%
#' filter(mo_genus(mo) == "Staphylococcus") %>%
#' resistance_predict("peni")
#' plot(x)
2018-08-10 15:01:05 +02:00
#'
#'
2019-02-11 10:27:10 +01:00
#' # get the model from the object
#' mymodel <- attributes(x)$model
#' summary(mymodel)
#'
#'
#' # create nice plots with ggplot2 yourself
2018-08-10 15:01:05 +02:00
#' if (!require(ggplot2)) {
#'
#' data <- septic_patients %>%
2018-12-22 22:39:34 +01:00
#' filter(mo == as.mo("E. coli")) %>%
2018-08-10 15:01:05 +02:00
#' resistance_predict(col_ab = "amox",
2018-12-22 22:39:34 +01:00
#' col_date = "date",
#' info = FALSE,
2019-01-15 12:45:24 +01:00
#' minimum = 15)
2018-08-10 15:01:05 +02:00
#'
#' ggplot(data,
#' aes(x = year)) +
#' geom_col(aes(y = value),
#' fill = "grey75") +
#' geom_errorbar(aes(ymin = se_min,
#' ymax = se_max),
#' colour = "grey50") +
#' scale_y_continuous(limits = c(0, 1),
#' breaks = seq(0, 1, 0.1),
#' labels = paste0(seq(0, 100, 10), "%")) +
#' labs(title = expression(paste("Forecast of amoxicillin resistance in ",
#' italic("E. coli"))),
#' y = "%IR",
#' x = "Year") +
#' theme_minimal(base_size = 13)
#' }
resistance_predict <- function ( tbl ,
col_ab ,
2019-01-15 12:45:24 +01:00
col_date = NULL ,
2018-08-10 15:01:05 +02:00
year_min = NULL ,
year_max = NULL ,
year_every = 1 ,
minimum = 30 ,
model = ' binomial' ,
I_as_R = TRUE ,
preserve_measurements = TRUE ,
info = TRUE ) {
if ( nrow ( tbl ) == 0 ) {
stop ( ' This table does not contain any observations.' )
}
if ( ! col_ab %in% colnames ( tbl ) ) {
stop ( ' Column ' , col_ab , ' not found.' )
}
2019-01-15 12:45:24 +01:00
# -- date
if ( is.null ( col_date ) ) {
col_date <- search_type_in_df ( tbl = tbl , type = " date" )
}
if ( is.null ( col_date ) ) {
stop ( " `col_date` must be set." , call. = FALSE )
}
2018-08-10 15:01:05 +02:00
if ( ! col_date %in% colnames ( tbl ) ) {
stop ( ' Column ' , col_date , ' not found.' )
}
2019-01-15 12:45:24 +01:00
if ( n_groups ( tbl ) > 1 ) {
2018-08-10 15:01:05 +02:00
# no grouped tibbles please, mutate will throw errors
tbl <- base :: as.data.frame ( tbl , stringsAsFactors = FALSE )
}
year <- function ( x ) {
if ( all ( grepl ( ' ^[0-9]{4}$' , x ) ) ) {
x
} else {
as.integer ( format ( as.Date ( x ) , ' %Y' ) )
}
}
df <- tbl %>%
2019-01-15 12:45:24 +01:00
mutate_at ( col_ab , as.rsi ) %>%
mutate_at ( col_ab , droplevels ) %>%
mutate_at ( col_ab , funs (
if ( I_as_R == TRUE ) {
gsub ( " I" , " R" , .)
} else {
gsub ( " I" , " S" , .)
}
) ) %>%
filter_at ( col_ab , all_vars ( ! is.na ( .) ) ) %>%
mutate ( year = pull ( ., col_date ) %>% year ( ) ) %>%
2018-08-10 15:01:05 +02:00
group_by_at ( c ( ' year' , col_ab ) ) %>%
summarise ( n ( ) )
if ( df %>% pull ( col_ab ) %>% n_distinct ( na.rm = TRUE ) < 2 ) {
stop ( " No variety in antimicrobial interpretations - all isolates are '" ,
2019-01-15 12:45:24 +01:00
df %>% pull ( col_ab ) %>% unique ( ) , " '." ,
2018-08-10 15:01:05 +02:00
call. = FALSE )
}
colnames ( df ) <- c ( ' year' , ' antibiotic' , ' observations' )
df <- df %>%
filter ( ! is.na ( antibiotic ) ) %>%
tidyr :: spread ( antibiotic , observations , fill = 0 ) %>%
2019-01-15 12:45:24 +01:00
filter ( ( R + S ) >= minimum )
df_matrix <- df %>%
ungroup ( ) %>%
select ( R , S ) %>%
as.matrix ( )
2018-08-10 15:01:05 +02:00
if ( NROW ( df ) == 0 ) {
stop ( ' There are no observations.' )
}
year_lowest <- min ( df $ year )
if ( is.null ( year_min ) ) {
year_min <- year_lowest
} else {
year_min <- max ( year_min , year_lowest , na.rm = TRUE )
}
if ( is.null ( year_max ) ) {
2019-01-12 19:31:30 +01:00
year_max <- year ( Sys.Date ( ) ) + 10
2018-08-10 15:01:05 +02:00
}
2019-01-15 12:45:24 +01:00
years <- list ( year = seq ( from = year_min , to = year_max , by = year_every ) )
2018-08-10 15:01:05 +02:00
if ( model %in% c ( ' binomial' , ' binom' , ' logit' ) ) {
2019-01-15 12:45:24 +01:00
model <- " binomial"
model_lm <- with ( df , glm ( df_matrix ~ year , family = binomial ) )
2018-08-10 15:01:05 +02:00
if ( info == TRUE ) {
cat ( ' \nLogistic regression model (logit) with binomial distribution' )
cat ( ' \n------------------------------------------------------------\n' )
2019-01-15 12:45:24 +01:00
print ( summary ( model_lm ) )
2018-08-10 15:01:05 +02:00
}
2019-01-15 12:45:24 +01:00
predictmodel <- predict ( model_lm , newdata = years , type = " response" , se.fit = TRUE )
2018-08-10 15:01:05 +02:00
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
2019-01-15 12:45:24 +01:00
} else if ( model %in% c ( ' loglin' , ' poisson' ) ) {
model <- " poisson"
model_lm <- with ( df , glm ( R ~ year , family = poisson ) )
2018-08-10 15:01:05 +02:00
if ( info == TRUE ) {
cat ( ' \nLog-linear regression model (loglin) with poisson distribution' )
cat ( ' \n--------------------------------------------------------------\n' )
2019-01-15 12:45:24 +01:00
print ( summary ( model_lm ) )
2018-08-10 15:01:05 +02:00
}
2019-01-15 12:45:24 +01:00
predictmodel <- predict ( model_lm , newdata = years , type = " response" , se.fit = TRUE )
2018-08-10 15:01:05 +02:00
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
} else if ( model %in% c ( ' lin' , ' linear' ) ) {
2019-01-15 12:45:24 +01:00
model <- " linear"
model_lm <- with ( df , lm ( ( R / ( R + S ) ) ~ year ) )
2018-08-10 15:01:05 +02:00
if ( info == TRUE ) {
cat ( ' \nLinear regression model' )
cat ( ' \n-----------------------\n' )
2019-01-15 12:45:24 +01:00
print ( summary ( model_lm ) )
2018-08-10 15:01:05 +02:00
}
2019-01-15 12:45:24 +01:00
predictmodel <- predict ( model_lm , newdata = years , se.fit = TRUE )
2018-08-10 15:01:05 +02:00
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
} else {
stop ( ' No valid model selected.' )
}
# prepare the output dataframe
2019-01-15 12:45:24 +01:00
df_prediction <- data.frame ( year = unlist ( years ) ,
value = prediction ,
stringsAsFactors = FALSE ) %>%
2018-08-10 15:01:05 +02:00
2019-01-15 12:45:24 +01:00
mutate ( se_min = value - se ,
se_max = value + se )
2018-08-10 15:01:05 +02:00
2019-01-15 12:45:24 +01:00
if ( model == ' poisson' ) {
df_prediction <- df_prediction %>%
mutate ( value = value %>%
format ( scientific = FALSE ) %>%
as.integer ( ) ,
se_min = as.integer ( se_min ) ,
se_max = as.integer ( se_max ) )
2018-08-10 15:01:05 +02:00
} else {
2019-01-15 12:45:24 +01:00
df_prediction <- df_prediction %>%
# se_max not above 1
mutate ( se_max = ifelse ( se_max > 1 , 1 , se_max ) )
2018-08-10 15:01:05 +02:00
}
2019-01-15 12:45:24 +01:00
df_prediction <- df_prediction %>%
# se_min not below 0
mutate ( se_min = ifelse ( se_min < 0 , 0 , se_min ) )
2018-08-10 15:01:05 +02:00
2019-01-15 12:45:24 +01:00
df_observations <- df %>%
ungroup ( ) %>%
transmute ( year ,
observations = R + S ,
observed = R / ( R + S ) )
df_prediction <- df_prediction %>%
left_join ( df_observations , by = " year" ) %>%
mutate ( estimated = value )
2018-08-10 15:01:05 +02:00
if ( preserve_measurements == TRUE ) {
# replace estimated data by observed data
2019-01-15 12:45:24 +01:00
df_prediction <- df_prediction %>%
mutate ( value = ifelse ( ! is.na ( observed ) , observed , value ) ,
se_min = ifelse ( ! is.na ( observed ) , NA , se_min ) ,
se_max = ifelse ( ! is.na ( observed ) , NA , se_max ) )
2018-08-10 15:01:05 +02:00
}
2019-01-15 12:45:24 +01:00
df_prediction <- df_prediction %>%
mutate ( value = case_when ( value > 1 ~ 1 ,
value < 0 ~ 0 ,
TRUE ~ value ) ) %>%
arrange ( year )
structure (
.Data = df_prediction ,
class = c ( " resistance_predict" , " data.frame" ) ,
I_as_R = I_as_R ,
model_title = model ,
model = model_lm ,
ab = col_ab
)
}
#' @rdname resistance_predict
#' @export
rsi_predict <- resistance_predict
#' @exportMethod plot.mic
#' @export
2019-02-11 10:27:10 +01:00
#' @importFrom dplyr filter
#' @importFrom graphics plot axis arrows points
2019-01-15 12:45:24 +01:00
#' @rdname resistance_predict
plot.resistance_predict <- function ( x , main = paste ( " Resistance prediction of" , attributes ( x ) $ ab ) , ... ) {
if ( attributes ( x ) $ I_as_R == TRUE ) {
ylab <- " %IR"
} else {
ylab <- " %R"
2018-08-10 15:01:05 +02:00
}
2019-01-15 12:45:24 +01:00
plot ( x = x $ year ,
y = x $ value ,
ylim = c ( 0 , 1 ) ,
yaxt = " n" , # no y labels
pch = 19 , # closed dots
ylab = paste0 ( " Percentage (" , ylab , " )" ) ,
xlab = " Year" ,
main = main ,
2019-02-09 22:16:24 +01:00
sub = paste0 ( " (n = " , sum ( x $ observations , na.rm = TRUE ) ,
" , model: " , attributes ( x ) $ model_title , " )" ) ,
cex.sub = 0.75 )
2018-08-10 15:01:05 +02:00
2019-02-11 10:27:10 +01:00
2019-01-15 12:45:24 +01:00
axis ( side = 2 , at = seq ( 0 , 1 , 0.1 ) , labels = paste0 ( 0 : 10 * 10 , " %" ) )
2018-08-10 15:01:05 +02:00
2019-02-11 10:27:10 +01:00
# hack for error bars: https://stackoverflow.com/a/22037078/4575331
2019-01-15 12:45:24 +01:00
arrows ( x0 = x $ year ,
y0 = x $ se_min ,
x1 = x $ year ,
2019-02-11 10:27:10 +01:00
y1 = x $ se_max ,
length = 0.05 , angle = 90 , code = 3 , lwd = 1.5 )
# overlay grey points for prediction
points ( x = filter ( x , is.na ( observations ) ) $ year ,
y = filter ( x , is.na ( observations ) ) $ value ,
pch = 19 ,
col = " grey40" )
2018-08-10 15:01:05 +02:00
}
#' @rdname resistance_predict
2019-02-11 10:27:10 +01:00
#' @importFrom dplyr filter
2018-08-10 15:01:05 +02:00
#' @export
2019-02-11 10:27:10 +01:00
ggplot_rsi_predict <- function ( x ,
main = paste ( " Resistance prediction of" , attributes ( x ) $ ab ) ,
ribbon = TRUE ,
... ) {
2019-01-15 12:45:24 +01:00
if ( ! " resistance_predict" %in% class ( x ) ) {
stop ( " `x` must be a resistance prediction model created with resistance_predict()." )
}
if ( attributes ( x ) $ I_as_R == TRUE ) {
ylab <- " %IR"
} else {
ylab <- " %R"
}
2019-02-11 10:27:10 +01:00
p <- ggplot2 :: ggplot ( x , ggplot2 :: aes ( x = year , y = value ) ) +
ggplot2 :: geom_point ( data = filter ( x , ! is.na ( observations ) ) ,
size = 2 ) +
scale_y_percent ( limits = c ( 0 , 1 ) ) +
ggplot2 :: labs ( title = main ,
y = paste0 ( " Percentage (" , ylab , " )" ) ,
x = " Year" ,
caption = paste0 ( " (n = " , sum ( x $ observations , na.rm = TRUE ) ,
" , model: " , attributes ( x ) $ model_title , " )" ) )
if ( ribbon == TRUE ) {
p <- p + ggplot2 :: geom_ribbon ( ggplot2 :: aes ( ymin = se_min , ymax = se_max ) , alpha = 0.25 )
} else {
p <- p + ggplot2 :: geom_errorbar ( ggplot2 :: aes ( ymin = se_min , ymax = se_max ) , na.rm = TRUE , width = 0.5 )
}
p <- p +
# overlay grey points for prediction
ggplot2 :: geom_point ( data = filter ( x , is.na ( observations ) ) ,
size = 2 ,
colour = " grey40" )
p
2019-01-15 12:45:24 +01:00
}