1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-14 00:11:50 +01:00
AMR/tests/testthat/test-episode.R

59 lines
2.7 KiB
R
Raw Normal View History

2020-11-23 21:50:27 +01:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis for R #
# #
# SOURCE #
# https://github.com/msberends/AMR #
# #
# LICENCE #
2020-12-27 00:30:28 +01:00
# (c) 2018-2021 Berends MS, Luz CF et al. #
2020-11-23 21:50:27 +01:00
# Developed at the University of Groningen, the Netherlands, in #
# collaboration with non-profit organisations Certe Medical #
# Diagnostics & Advice, and University Medical Center Groningen. #
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR analysis: https://msberends.github.io/AMR/ #
# ==================================================================== #
2020-12-27 00:07:00 +01:00
context("episode.R")
2020-11-23 21:50:27 +01:00
2020-12-27 00:30:28 +01:00
test_that("episodes work", {
2020-11-23 21:50:27 +01:00
skip_on_cran()
test_df <- rbind(
data.frame(
date = as.Date(c("2015-01-01", "2015-10-01", "2016-02-04", "2016-12-31", "2017-01-01", "2017-02-01", "2017-02-05", "2020-01-01")),
patient_id = "A"
),
data.frame(
date = as.Date(c("2015-01-01", "2016-02-01", "2016-12-31", "2017-01-01", "2017-02-03")),
patient_id = "B"
))
2020-12-27 00:30:28 +01:00
expect_equal(get_episode(test_df$date, 365),
c(1, 1, 2, 2, 2, 3, 3, 4, 1, 2, 2, 2, 3))
2020-11-23 21:50:27 +01:00
library(dplyr)
2020-12-27 00:30:28 +01:00
expect_identical(test_df %>% group_by(patient_id) %>% mutate(f = is_new_episode(date, 365)) %>% pull(f),
2020-11-23 21:50:27 +01:00
c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE))
suppressMessages(
x <- example_isolates %>%
mutate(out = first_isolate(., include_unknown = TRUE, info = FALSE))
)
y <- example_isolates %>%
group_by(patient_id, mo) %>%
2020-12-27 00:30:28 +01:00
mutate(out = is_new_episode(date, 365))
2020-11-23 21:50:27 +01:00
expect_identical(which(x$out), which(y$out))
})