2018-06-08 12:06:54 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# AUTHORS #
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# LICENCE #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License version 2.0, #
# as published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# ==================================================================== #
2018-07-23 14:14:03 +02:00
#' Transform to bacteria ID
2018-06-08 12:06:54 +02:00
#'
2018-07-23 14:14:03 +02:00
#' Use this function to determine a valid ID based on a genus (and species). This input can be a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (like \code{"S. aureus"}), or just a genus. You could also \code{\link{select}} a genus and species column, zie Examples.
#' @param x a character vector or a dataframe with one or two columns
#' @rdname as.bactid
2018-08-01 08:03:31 +02:00
#' @details \code{guess_bactid} does exactly the same as \code{as.bactid}.
#'
#' Some exceptions have been built in to get more logical results, based on prevalence of human pathogens. For example:
2018-07-23 14:14:03 +02:00
#' \itemize{
#' \item{\code{"E. coli"} will return the ID of \emph{Escherichia coli} and not \emph{Entamoeba coli}, although the latter would alphabetically come first}
#' \item{\code{"H. influenzae"} will return the ID of \emph{Haemophilus influenzae} and not \emph{Haematobacter influenzae}}
#' \item{Something like \code{"p aer"} will return the ID of \emph{Pseudomonas aeruginosa} and not \emph{Pasteurella aerogenes}}
#' \item{Something like \code{"stau"} or \code{"staaur"} will return the ID of \emph{Staphylococcus aureus} and not \emph{Staphylococcus auricularis}}
#' }
#' Moreover, this function also supports ID's based on only Gram stain, when the species is not known. \cr
#' For example, \code{"Gram negative rods"} and \code{"GNR"} will both return the ID of a Gram negative rod: \code{GNR}.
2018-06-08 12:06:54 +02:00
#' @export
#' @importFrom dplyr %>% filter pull
2018-07-23 14:14:03 +02:00
#' @return Character (vector) with class \code{"bactid"}. Unknown values will return \code{NA}.
2018-06-08 12:06:54 +02:00
#' @seealso \code{\link{microorganisms}} for the dataframe that is being used to determine ID's.
#' @examples
#' # These examples all return "STAAUR", the ID of S. aureus:
2018-07-23 14:14:03 +02:00
#' as.bactid("stau")
#' as.bactid("STAU")
#' as.bactid("staaur")
#' as.bactid("S. aureus")
#' as.bactid("S aureus")
#' as.bactid("Staphylococcus aureus")
#' as.bactid("MRSA") # Methicillin Resistant S. aureus
#' as.bactid("VISA") # Vancomycin Intermediate S. aureus
#' as.bactid("VRSA") # Vancomycin Resistant S. aureus
2018-06-08 12:06:54 +02:00
#'
#' \dontrun{
2018-07-23 14:14:03 +02:00
#' df$bactid <- as.bactid(df$microorganism_name)
2018-06-08 12:06:54 +02:00
#'
#' # the select function of tidyverse is also supported:
2018-07-23 14:14:03 +02:00
#' library(dplyr)
#' df$bactid <- df %>%
#' select(microorganism_name) %>%
2018-08-01 08:03:31 +02:00
#' guess_bactid()
2018-06-08 12:06:54 +02:00
#'
#' # and can even contain 2 columns, which is convenient for genus/species combinations:
2018-07-23 14:14:03 +02:00
#' df$bactid <- df %>%
#' select(genus, species) %>%
2018-08-01 08:03:31 +02:00
#' guess_bactid()
2018-07-23 14:14:03 +02:00
#'
2018-06-08 12:06:54 +02:00
#' # same result:
2018-07-23 14:14:03 +02:00
#' df <- df %>%
2018-08-01 08:03:31 +02:00
#' mutate(bactid = guess_bactid(paste(genus, species)))
2018-06-08 12:06:54 +02:00
#' }
2018-07-23 14:14:03 +02:00
as.bactid <- function ( x ) {
failures <- character ( 0 )
2018-06-08 12:06:54 +02:00
if ( NCOL ( x ) == 2 ) {
# support tidyverse selection like: df %>% select(colA, colB)
# paste these columns together
x_vector <- vector ( " character" , NROW ( x ) )
for ( i in 1 : NROW ( x ) ) {
x_vector [i ] <- paste ( pull ( x [i , ] , 1 ) , pull ( x [i , ] , 2 ) , sep = " " )
}
x <- x_vector
} else {
if ( NCOL ( x ) > 2 ) {
stop ( ' `x` can be 2 columns at most' , call. = FALSE )
}
2018-07-23 14:14:03 +02:00
2018-06-08 12:06:54 +02:00
# support tidyverse selection like: df %>% select(colA)
if ( ! is.vector ( x ) ) {
x <- pull ( x , 1 )
}
}
2018-07-23 14:14:03 +02:00
x.fullbackup <- x
2018-06-08 12:06:54 +02:00
# remove dots and other non-text in case of "E. coli" except spaces
2018-07-23 14:14:03 +02:00
x <- gsub ( " [^a-zA-Z0-9 ]+" , " " , x )
2018-06-08 12:06:54 +02:00
# but spaces before and after should be omitted
x <- trimws ( x , which = " both" )
2018-07-23 14:14:03 +02:00
x.backup <- x
2018-06-08 12:06:54 +02:00
# replace space by regex sign
x <- gsub ( " " , " .*" , x , fixed = TRUE )
# add start and stop
x_species <- paste ( x , ' species' )
x <- paste0 ( ' ^' , x , ' $' )
for ( i in 1 : length ( x ) ) {
2018-07-29 22:14:51 +02:00
2018-07-30 00:14:06 +02:00
if ( identical ( x.backup [i ] , " " ) ) {
# empty values
x [i ] <- NA
failures <- c ( failures , x.fullbackup [i ] )
next
}
2018-07-29 22:14:51 +02:00
if ( x.fullbackup [i ] %in% AMR :: microorganisms $ bactid ) {
# is already a valid bactid
x [i ] <- x.fullbackup [i ]
next
}
if ( x.backup [i ] %in% AMR :: microorganisms $ bactid ) {
# is already a valid bactid
x [i ] <- x.backup [i ]
next
}
2018-06-08 12:06:54 +02:00
if ( tolower ( x [i ] ) == ' ^e.*coli$' ) {
# avoid detection of Entamoeba coli in case of E. coli
2018-07-30 00:14:06 +02:00
x [i ] <- ' ESCCOL'
next
2018-06-08 12:06:54 +02:00
}
if ( tolower ( x [i ] ) == ' ^h.*influenzae$' ) {
# avoid detection of Haematobacter influenzae in case of H. influenzae
2018-07-30 01:18:40 +02:00
x [i ] <- ' HAEINF'
next
2018-06-08 12:06:54 +02:00
}
if ( tolower ( x [i ] ) == ' ^st.*au$'
| tolower ( x [i ] ) == ' ^stau$'
| tolower ( x [i ] ) == ' ^staaur$' ) {
# avoid detection of Staphylococcus auricularis in case of S. aureus
2018-07-30 01:18:40 +02:00
x [i ] <- ' STAAUR'
next
2018-06-08 12:06:54 +02:00
}
if ( tolower ( x [i ] ) == ' ^p.*aer$' ) {
# avoid detection of Pasteurella aerogenes in case of Pseudomonas aeruginosa
2018-07-30 01:18:40 +02:00
x [i ] <- ' PSEAER'
next
2018-06-08 12:06:54 +02:00
}
2018-07-23 14:14:03 +02:00
if ( tolower ( x [i ] ) %like% ' coagulase'
| tolower ( x [i ] ) %like% ' cns'
| tolower ( x [i ] ) %like% ' cons' ) {
# coerce S. coagulase negative, also as CNS and CoNS
2018-07-30 01:18:40 +02:00
x [i ] <- ' STACNS'
next
2018-07-04 17:20:03 +02:00
}
2018-06-08 12:06:54 +02:00
# translate known trivial names to genus+species
2018-07-23 14:14:03 +02:00
if ( ! is.na ( x.backup [i ] ) ) {
if ( toupper ( x.backup [i ] ) == ' MRSA'
| toupper ( x.backup [i ] ) == ' VISA'
| toupper ( x.backup [i ] ) == ' VRSA' ) {
2018-07-30 01:18:40 +02:00
x [i ] <- ' STAAUR'
next
2018-06-08 12:06:54 +02:00
}
2018-07-23 14:14:03 +02:00
if ( toupper ( x.backup [i ] ) == ' MRSE' ) {
2018-08-01 08:03:31 +02:00
x [i ] <- ' STAEPI'
next
2018-06-08 12:06:54 +02:00
}
2018-07-23 14:14:03 +02:00
if ( toupper ( x.backup [i ] ) == ' VRE' ) {
2018-07-30 01:18:40 +02:00
x [i ] <- ' ENC'
next
2018-06-08 12:06:54 +02:00
}
2018-07-23 14:14:03 +02:00
if ( toupper ( x.backup [i ] ) == ' MRPA' ) {
2018-06-08 12:06:54 +02:00
# multi resistant P. aeruginosa
2018-07-30 01:18:40 +02:00
x [i ] <- ' PSEAER'
next
2018-06-08 12:06:54 +02:00
}
2018-08-01 08:03:31 +02:00
if ( toupper ( x.backup [i ] ) %in% c ( ' PISP' , ' PRSP' , ' VISP' , ' VRSP' ) ) {
# peni R, peni I, vanco I, vanco R: S. pneumoniae
x [i ] <- ' STCPNE'
2018-08-01 09:45:11 +02:00
next
2018-06-08 12:06:54 +02:00
}
}
# let's try the ID's first
2018-07-30 00:14:06 +02:00
found <- AMR :: microorganisms [which ( AMR :: microorganisms $ bactid == x.backup [i ] ) , ] $ bactid
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
2018-06-08 12:06:54 +02:00
2018-07-30 00:14:06 +02:00
# now try exact match
found <- AMR :: microorganisms [which ( AMR :: microorganisms $ fullname == x [i ] ) , ] $ bactid
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
# try any match
found <- AMR :: microorganisms [which ( AMR :: microorganisms $ fullname %like% x [i ] ) , ] $ bactid
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
}
# try exact match of only genus, with 'species' attached
# (e.g. this prevents Streptococcus for becoming Peptostreptococcus, since "p" < "s")
found <- AMR :: microorganisms [which ( AMR :: microorganisms $ fullname == x_species [i ] ) , ] $ bactid
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
2018-06-08 12:06:54 +02:00
}
2018-07-30 00:14:06 +02:00
# try any match of only genus, with 'species' attached
found <- AMR :: microorganisms [which ( AMR :: microorganisms $ fullname %like% x_species [i ] ) , ] $ bactid
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
2018-06-08 12:06:54 +02:00
}
2018-07-30 00:14:06 +02:00
# search for GLIMS code
found <- AMR :: microorganisms.umcg [which ( toupper ( AMR :: microorganisms.umcg $ mocode ) == toupper ( x.backup [i ] ) ) , ] $ bactid
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
2018-06-08 12:06:54 +02:00
}
2018-07-30 00:14:06 +02:00
# try splitting of characters and then find ID
# like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus
x_split <- x
x_length <- nchar ( x.backup [i ] )
x_split [i ] <- paste0 ( x.backup [i ] %>% substr ( 1 , x_length / 2 ) %>% trimws ( ) ,
' .* ' ,
x.backup [i ] %>% substr ( ( x_length / 2 ) + 1 , x_length ) %>% trimws ( ) )
found <- AMR :: microorganisms [which ( AMR :: microorganisms $ fullname %like% paste0 ( ' ^' , x_split [i ] ) ) , ] $ bactid
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
2018-06-08 12:06:54 +02:00
}
2018-07-30 00:14:06 +02:00
# try any match with text before and after original search string
# so "negative rods" will be "GNR"
if ( x.backup [i ] %like% " ^Gram" ) {
x.backup [i ] <- gsub ( " ^Gram" , " " , x.backup [i ] , ignore.case = TRUE )
# remove leading and trailing spaces again
x.backup [i ] <- trimws ( x.backup [i ] , which = " both" )
2018-06-08 12:06:54 +02:00
}
2018-07-30 00:14:06 +02:00
if ( ! is.na ( x.backup [i ] ) ) {
found <- AMR :: microorganisms [which ( AMR :: microorganisms $ fullname %like% x.backup [i ] ) , ] $ bactid
if ( length ( found ) > 0 ) {
x [i ] <- found [1L ]
next
2018-06-08 12:06:54 +02:00
}
}
2018-07-30 00:14:06 +02:00
# not found
x [i ] <- NA_character_
failures <- c ( failures , x.fullbackup [i ] )
2018-06-08 12:06:54 +02:00
}
2018-07-23 14:14:03 +02:00
failures <- failures [ ! failures %in% c ( NA , NULL , NaN ) ]
if ( length ( failures ) > 0 ) {
warning ( " These values could not be coerced to a valid bactid: " ,
paste ( ' "' , unique ( failures ) , ' "' , sep = " " , collapse = ' , ' ) ,
" ." ,
call. = FALSE )
}
class ( x ) <- " bactid"
attr ( x , ' package' ) <- ' AMR'
2018-06-08 12:06:54 +02:00
x
}
2018-07-23 14:14:03 +02:00
#' @rdname as.bactid
#' @export
guess_bactid <- as.bactid
#' @rdname as.bactid
#' @export
is.bactid <- function ( x ) {
identical ( class ( x ) , " bactid" )
}
#' @exportMethod print.bactid
#' @export
#' @noRd
print.bactid <- function ( x , ... ) {
cat ( " Class 'bactid'\n" )
print.default ( as.character ( x ) , quote = FALSE )
}
#' @exportMethod as.data.frame.bactid
#' @export
#' @noRd
as.data.frame.bactid <- function ( x , ... ) {
# same as as.data.frame.character but with removed stringsAsFactors
nm <- paste ( deparse ( substitute ( x ) , width.cutoff = 500L ) ,
collapse = " " )
if ( ! " nm" %in% names ( list ( ... ) ) ) {
as.data.frame.vector ( x , ... , nm = nm )
} else {
as.data.frame.vector ( x , ... )
}
}
2018-07-29 22:14:51 +02:00
#' @exportMethod pull.bactid
#' @export
#' @importFrom dplyr pull
#' @noRd
pull.bactid <- function ( .data , ... ) {
pull ( as.data.frame ( .data ) , ... )
}