1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-13 23:31:38 +01:00
AMR/man/resistance.Rd

135 lines
5.4 KiB
Plaintext
Raw Normal View History

2018-07-13 17:23:46 +02:00
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/resistance.R
\name{resistance}
\alias{resistance}
2018-07-29 22:14:51 +02:00
\alias{S}
\alias{SI}
\alias{IR}
\alias{R}
2018-07-13 17:23:46 +02:00
\alias{n_rsi}
2018-07-29 22:14:51 +02:00
\alias{susceptibility}
2018-07-13 17:23:46 +02:00
\alias{rsi}
\title{Calculate resistance of isolates}
2018-07-29 22:14:51 +02:00
\source{
\strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, \emph{Clinical and Laboratory Standards Institute (CLSI)}. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
}
2018-07-13 17:23:46 +02:00
\usage{
2018-07-29 22:14:51 +02:00
S(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE)
2018-07-13 17:23:46 +02:00
2018-07-29 22:14:51 +02:00
SI(ab1, ab2 = NULL, minimum = 30, as_percent = FALSE)
IR(ab1, minimum = 30, as_percent = FALSE)
R(ab1, minimum = 30, as_percent = FALSE)
2018-07-13 17:23:46 +02:00
n_rsi(ab1, ab2 = NULL)
2018-07-29 22:14:51 +02:00
resistance(ab1, include_I = TRUE, minimum = 30, as_percent = FALSE)
susceptibility(ab1, ab2 = NULL, include_I = FALSE, minimum = 30,
as_percent = FALSE)
2018-07-15 22:56:41 +02:00
rsi(ab1, ab2 = NA, interpretation = "IR", minimum = 30,
as_percent = FALSE, info = FALSE, warning = TRUE)
2018-07-13 17:23:46 +02:00
}
\arguments{
2018-07-29 22:14:51 +02:00
\item{ab1}{vector of antibiotic interpretations, they will be transformed internally with \code{\link{as.rsi}}}
2018-07-13 17:23:46 +02:00
2018-07-29 22:14:51 +02:00
\item{ab2}{like \code{ab}, a vector of antibiotic interpretations. Use this to calculate (the lack of) co-resistance: the probability where one of two drugs have a susceptible result. See Examples.}
2018-07-13 17:23:46 +02:00
2018-07-29 22:14:51 +02:00
\item{minimum}{minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA}. The default number of \code{30} isolates is advised by the CLSI as best practice, see Source.}
2018-07-13 17:23:46 +02:00
\item{as_percent}{logical to indicate whether the output must be returned as percent (text), will else be a double}
2018-07-29 22:14:51 +02:00
\item{include_I}{logical to indicate whether antimicrobial interpretations of "I" should be included}
2018-07-13 17:23:46 +02:00
\item{interpretation}{antimicrobial interpretation}
2018-07-15 22:56:41 +02:00
\item{info}{\emph{DEPRECATED} calculate the amount of available isolates and print it, like \code{n = 423}}
\item{warning}{\emph{DEPRECATED} show a warning when the available amount of isolates is below \code{minimum}}
2018-07-13 17:23:46 +02:00
}
\value{
Double or, when \code{as_percent = TRUE}, a character.
}
\description{
2018-07-29 22:14:51 +02:00
These functions can be used to calculate the (co-)resistance of microbial isolates (i.e. percentage S, SI, IR or R). All functions can be used in \code{dplyr}s \code{\link[dplyr]{summarise}} and support grouped variables, see \emph{Examples}. \cr\cr
\code{R} and \code{IR} can be used to calculate resistance, \code{S} and \code{SI} can be used to calculate susceptibility.\cr
\code{n_rsi} counts all cases where antimicrobial interpretations are available.
2018-07-13 17:23:46 +02:00
}
\details{
\strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
2018-07-29 22:14:51 +02:00
The functions \code{resistance} and \code{susceptibility} are wrappers around \code{IR} and \code{S}, respectively. All functions except \code{rsi} use hybrid evaluation (i.e. using C++), which makes these functions 20-30 times faster than the old \code{rsi} function. This latter function is still available for backwards compatibility but is deprecated.
2018-07-13 17:23:46 +02:00
\if{html}{
2018-07-29 22:14:51 +02:00
\cr\cr
2018-07-13 17:23:46 +02:00
To calculate the probability (\emph{p}) of susceptibility of one antibiotic, we use this formula:
\out{<div style="text-align: center">}\figure{mono_therapy.png}\out{</div>}
To calculate the probability (\emph{p}) of susceptibility of more antibiotics (i.e. combination therapy), we need to check whether one of them has a susceptible result (as numerator) and count all cases where all antibiotics were tested (as denominator). \cr
\cr
For two antibiotics:
\out{<div style="text-align: center">}\figure{combi_therapy_2.png}\out{</div>}
\cr
Theoretically for three antibiotics:
\out{<div style="text-align: center">}\figure{combi_therapy_3.png}\out{</div>}
}
}
\examples{
# Calculate resistance
2018-07-29 22:14:51 +02:00
R(septic_patients$amox)
IR(septic_patients$amox)
2018-07-13 17:23:46 +02:00
# Or susceptibility
2018-07-29 22:14:51 +02:00
S(septic_patients$amox)
SI(septic_patients$amox)
# Since n_rsi counts available isolates (and is used as denominator),
# you can calculate back to e.g. count resistant isolates:
IR(septic_patients$amox) * n_rsi(septic_patients$amox)
2018-07-13 17:23:46 +02:00
2018-07-29 22:14:51 +02:00
library(dplyr)
septic_patients \%>\%
group_by(hospital_id) \%>\%
summarise(p = S(cipr),
n = n_rsi(cipr)) # n_rsi works like n_distinct in dplyr
2018-07-13 17:23:46 +02:00
# Calculate co-resistance between amoxicillin/clav acid and gentamicin,
# so we can see that combination therapy does a lot more than mono therapy:
2018-07-29 22:14:51 +02:00
S(septic_patients$amcl) # p = 67.3\%
n_rsi(septic_patients$amcl) # n = 1570
2018-07-13 17:23:46 +02:00
2018-07-29 22:14:51 +02:00
S(septic_patients$gent) # p = 74.0\%
n_rsi(septic_patients$gent) # n = 1842
2018-07-13 17:23:46 +02:00
with(septic_patients,
2018-07-29 22:14:51 +02:00
S(amcl, gent)) # p = 92.1\%
2018-07-13 17:23:46 +02:00
with(septic_patients,
2018-07-29 22:14:51 +02:00
n_rsi(amcl, gent)) # n = 1504
septic_patients \%>\%
group_by(hospital_id) \%>\%
summarise(cipro_p = S(cipr, as_percent = TRUE),
cipro_n = n_rsi(cipr),
genta_p = S(gent, as_percent = TRUE),
genta_n = n_rsi(gent),
combination_p = S(cipr, gent, as_percent = TRUE),
combination_n = n_rsi(cipr, gent))
2018-07-13 17:23:46 +02:00
\dontrun{
2018-07-29 22:14:51 +02:00
2018-07-13 17:23:46 +02:00
# calculate current empiric combination therapy of Helicobacter gastritis:
my_table \%>\%
filter(first_isolate == TRUE,
genus == "Helicobacter") \%>\%
2018-07-29 22:14:51 +02:00
summarise(p = S(amox, metr), # amoxicillin with metronidazole
2018-07-13 17:23:46 +02:00
n = n_rsi(amox, metr))
}
}
\keyword{antibiotics}
\keyword{isolate}
\keyword{isolates}
\keyword{resistance}
2018-07-29 22:14:51 +02:00
\keyword{rsi}
2018-07-13 17:23:46 +02:00
\keyword{rsi_df}
\keyword{susceptibility}