2022-08-21 16:59:35 +02:00
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --> < html lang = "en" >
< head >
< meta http-equiv = "Content-Type" content = "text/html; charset=UTF-8" >
< meta charset = "utf-8" >
< meta http-equiv = "X-UA-Compatible" content = "IE=edge" >
< meta name = "viewport" content = "width=device-width, initial-scale=1, shrink-to-fit=no" >
< title > How to predict antimicrobial resistance • AMR (for R)< / title >
<!-- favicons --> < link rel = "icon" type = "image/png" sizes = "16x16" href = "../favicon-16x16.png" >
< link rel = "icon" type = "image/png" sizes = "32x32" href = "../favicon-32x32.png" >
< link rel = "apple-touch-icon" type = "image/png" sizes = "180x180" href = "../apple-touch-icon.png" >
< link rel = "apple-touch-icon" type = "image/png" sizes = "120x120" href = "../apple-touch-icon-120x120.png" >
< link rel = "apple-touch-icon" type = "image/png" sizes = "76x76" href = "../apple-touch-icon-76x76.png" >
< link rel = "apple-touch-icon" type = "image/png" sizes = "60x60" href = "../apple-touch-icon-60x60.png" >
< script src = "../deps/jquery-3.6.0/jquery-3.6.0.min.js" > < / script > < meta name = "viewport" content = "width=device-width, initial-scale=1, shrink-to-fit=no" >
2023-12-03 01:14:24 +01:00
< link href = "../deps/bootstrap-5.3.1/bootstrap.min.css" rel = "stylesheet" >
2024-04-05 16:58:51 +02:00
< script src = "../deps/bootstrap-5.3.1/bootstrap.bundle.min.js" > < / script > < link href = "../deps/Lato-0.4.9/font.css" rel = "stylesheet" >
< link href = "../deps/Fira_Code-0.4.9/font.css" rel = "stylesheet" >
2024-11-21 10:17:08 +01:00
< link href = "../deps/font-awesome-6.5.2/css/all.min.css" rel = "stylesheet" >
< link href = "../deps/font-awesome-6.5.2/css/v4-shims.min.css" rel = "stylesheet" >
2024-07-16 15:00:55 +02:00
< script src = "../deps/headroom-0.11.0/headroom.min.js" > < / script > < script src = "../deps/headroom-0.11.0/jQuery.headroom.min.js" > < / script > < script src = "../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js" > < / script > < script src = "../deps/clipboard.js-2.0.11/clipboard.min.js" > < / script > < script src = "../deps/search-1.0.0/autocomplete.jquery.min.js" > < / script > < script src = "../deps/search-1.0.0/fuse.min.js" > < / script > < script src = "../deps/search-1.0.0/mark.min.js" > < / script > <!-- pkgdown --> < script src = "../pkgdown.js" > < / script > < link href = "../extra.css" rel = "stylesheet" >
2022-08-21 16:59:35 +02:00
< script src = "../extra.js" > < / script > < meta property = "og:title" content = "How to predict antimicrobial resistance" >
< / head >
< body >
< a href = "#main" class = "visually-hidden-focusable" > Skip to contents< / a >
2024-07-16 15:00:55 +02:00
< nav class = "navbar navbar-expand-lg fixed-top bg-primary" data-bs-theme = "dark" aria-label = "Site navigation" > < div class = "container" >
2022-08-21 16:59:35 +02:00
< a class = "navbar-brand me-2" href = "../index.html" > AMR (for R)< / a >
2024-12-19 20:25:10 +01:00
< small class = "nav-text text-muted me-auto" data-bs-toggle = "tooltip" data-bs-placement = "bottom" title = "" > 2.1.1.9121< / small >
2024-07-16 15:00:55 +02:00
2022-08-21 16:59:35 +02:00
< button class = "navbar-toggler" type = "button" data-bs-toggle = "collapse" data-bs-target = "#navbar" aria-controls = "navbar" aria-expanded = "false" aria-label = "Toggle navigation" >
< span class = "navbar-toggler-icon" > < / span >
< / button >
< div id = "navbar" class = "collapse navbar-collapse ms-3" >
< ul class = "navbar-nav me-auto" >
< li class = "active nav-item dropdown" >
2024-07-16 15:00:55 +02:00
< button class = "nav-link dropdown-toggle" type = "button" id = "dropdown-how-to" data-bs-toggle = "dropdown" aria-expanded = "false" aria-haspopup = "true" > < span class = "fa fa-question-circle" > < / span > How to< / button >
< ul class = "dropdown-menu" aria-labelledby = "dropdown-how-to" >
< li > < a class = "dropdown-item" href = "../articles/AMR.html" > < span class = "fa fa-directions" > < / span > Conduct AMR Analysis< / a > < / li >
< li > < a class = "dropdown-item" href = "../reference/antibiogram.html" > < span class = "fa fa-file-prescription" > < / span > Generate Antibiogram (Trad./Syndromic/WISCA)< / a > < / li >
< li > < a class = "dropdown-item" href = "../articles/resistance_predict.html" > < span class = "fa fa-dice" > < / span > Predict Antimicrobial Resistance< / a > < / li >
< li > < a class = "dropdown-item" href = "../articles/datasets.html" > < span class = "fa fa-database" > < / span > Download Data Sets for Own Use< / a > < / li >
2024-12-19 20:25:10 +01:00
< li > < a class = "dropdown-item" href = "../articles/AMR_with_tidymodels.html" > < span class = "fa fa-square-root-variable" > < / span > Use AMR for Predictive Modelling (tidymodels)< / a > < / li >
2024-07-16 15:00:55 +02:00
< li > < a class = "dropdown-item" href = "../reference/AMR-options.html" > < span class = "fa fa-gear" > < / span > Set User- Or Team-specific Package Settings< / a > < / li >
< li > < a class = "dropdown-item" href = "../articles/PCA.html" > < span class = "fa fa-compress" > < / span > Conduct Principal Component Analysis for AMR< / a > < / li >
< li > < a class = "dropdown-item" href = "../articles/MDR.html" > < span class = "fa fa-skull-crossbones" > < / span > Determine Multi-Drug Resistance (MDR)< / a > < / li >
< li > < a class = "dropdown-item" href = "../articles/WHONET.html" > < span class = "fa fa-globe-americas" > < / span > Work with WHONET Data< / a > < / li >
< li > < a class = "dropdown-item" href = "../articles/EUCAST.html" > < span class = "fa fa-exchange-alt" > < / span > Apply Eucast Rules< / a > < / li >
< li > < a class = "dropdown-item" href = "../reference/mo_property.html" > < span class = "fa fa-bug" > < / span > Get Taxonomy of a Microorganism< / a > < / li >
< li > < a class = "dropdown-item" href = "../reference/ab_property.html" > < span class = "fa fa-capsules" > < / span > Get Properties of an Antibiotic Drug< / a > < / li >
< li > < a class = "dropdown-item" href = "../reference/av_property.html" > < span class = "fa fa-capsules" > < / span > Get Properties of an Antiviral Drug< / a > < / li >
< / ul >
2022-08-21 16:59:35 +02:00
< / li >
2024-09-30 22:12:21 +02:00
< li class = "nav-item" > < a class = "nav-link" href = "../articles/AMR_for_Python.html" > < span class = "fa fab fa-python" > < / span > AMR for Python< / a > < / li >
2024-07-16 15:00:55 +02:00
< li class = "nav-item" > < a class = "nav-link" href = "../reference/index.html" > < span class = "fa fa-book-open" > < / span > Manual< / a > < / li >
< li class = "nav-item" > < a class = "nav-link" href = "../authors.html" > < span class = "fa fa-users" > < / span > Authors< / a > < / li >
2023-05-24 16:03:18 +02:00
< / ul >
2024-07-16 15:00:55 +02:00
< ul class = "navbar-nav" >
< li class = "nav-item" > < a class = "nav-link" href = "../news/index.html" > < span class = "fa far fa-newspaper" > < / span > Changelog< / a > < / li >
< li class = "nav-item" > < a class = "external-link nav-link" href = "https://github.com/msberends/AMR" > < span class = "fa fab fa-github" > < / span > Source Code< / a > < / li >
2022-08-21 16:59:35 +02:00
< / ul >
< / div >
2024-07-16 15:00:55 +02:00
2022-08-21 16:59:35 +02:00
< / div >
< / nav > < div class = "container template-article" >
< div class = "row" >
< main id = "main" class = "col-md-9" > < div class = "page-header" >
< img src = "../logo.svg" class = "logo" alt = "" > < h1 > How to predict antimicrobial resistance< / h1 >
2024-07-16 15:00:55 +02:00
< small class = "dont-index" > Source: < a href = "https://github.com/msberends/AMR/blob/main/vignettes/resistance_predict.Rmd" class = "external-link" > < code > vignettes/resistance_predict.Rmd< / code > < / a > < / small >
2022-08-21 16:59:35 +02:00
< div class = "d-none name" > < code > resistance_predict.Rmd< / code > < / div >
< / div >
< div class = "section level2" >
< h2 id = "needed-r-packages" > Needed R packages< a class = "anchor" aria-label = "anchor" href = "#needed-r-packages" > < / a >
< / h2 >
2022-10-29 14:24:08 +02:00
< p > As with many uses in R, we need some additional packages for AMR data
analysis. Our package works closely together with the < a href = "https://www.tidyverse.org" class = "external-link" > tidyverse packages< / a > < a href = "https://dplyr.tidyverse.org/" class = "external-link" > < code > dplyr< / code > < / a > and < a href = "https://ggplot2.tidyverse.org" class = "external-link" > < code > ggplot2< / code > < / a > . The
tidyverse tremendously improves the way we conduct data science - it
allows for a very natural way of writing syntaxes and creating beautiful
plots in R.< / p >
< p > Our < code > AMR< / code > package depends on these packages and even
extends their use and functions.< / p >
2022-08-21 16:59:35 +02:00
< div class = "sourceCode" id = "cb1" > < pre class = "downlit sourceCode r" >
< code class = "sourceCode R" > < span > < span class = "kw" > < a href = "https://rdrr.io/r/base/library.html" class = "external-link" > library< / a > < / span > < span class = "op" > (< / span > < span class = "va" > < a href = "https://dplyr.tidyverse.org" class = "external-link" > dplyr< / a > < / span > < span class = "op" > )< / span > < / span >
2024-12-19 20:25:10 +01:00
< span > < span class = "co" > #> Error in get(paste0(generic, ".", class), envir = get_method_env()) : < / span > < / span >
< span > < span class = "co" > #> object 'type_sum.accel' not found< / span > < / span >
2022-08-21 16:59:35 +02:00
< span > < span class = "kw" > < a href = "https://rdrr.io/r/base/library.html" class = "external-link" > library< / a > < / span > < span class = "op" > (< / span > < span class = "va" > < a href = "https://ggplot2.tidyverse.org" class = "external-link" > ggplot2< / a > < / span > < span class = "op" > )< / span > < / span >
< span > < span class = "kw" > < a href = "https://rdrr.io/r/base/library.html" class = "external-link" > library< / a > < / span > < span class = "op" > (< / span > < span class = "va" > < a href = "https://msberends.github.io/AMR/" > AMR< / a > < / span > < span class = "op" > )< / span > < / span >
< span > < / span >
< span > < span class = "co" > # (if not yet installed, install with:)< / span > < / span >
< span > < span class = "co" > # install.packages(c("tidyverse", "AMR"))< / span > < / span > < / code > < / pre > < / div >
< / div >
< div class = "section level2" >
< h2 id = "prediction-analysis" > Prediction analysis< a class = "anchor" aria-label = "anchor" href = "#prediction-analysis" > < / a >
< / h2 >
2022-10-29 14:24:08 +02:00
< p > Our package contains a function < code > < a href = "../reference/resistance_predict.html" > resistance_predict()< / a > < / code > ,
which takes the same input as functions for < a href = "./AMR.html" > other
AMR data analysis< / a > . Based on a date column, it calculates cases per
year and uses a regression model to predict antimicrobial
resistance.< / p >
2022-08-21 16:59:35 +02:00
< p > It is basically as easy as:< / p >
2022-08-28 22:45:38 +02:00
< div class = "sourceCode" id = "cb2" > < pre class = "downlit sourceCode r" >
< code class = "sourceCode R" > < span > < span class = "co" > # resistance prediction of piperacillin/tazobactam (TZP):< / span > < / span >
< span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > resistance_predict< / a > < / span > < span class = "op" > (< / span > tbl < span class = "op" > =< / span > < span class = "va" > example_isolates< / span > , col_date < span class = "op" > =< / span > < span class = "st" > "date"< / span > , col_ab < span class = "op" > =< / span > < span class = "st" > "TZP"< / span > , model < span class = "op" > =< / span > < span class = "st" > "binomial"< / span > < span class = "op" > )< / span > < / span >
< span > < / span >
< span > < span class = "co" > # or:< / span > < / span >
< span > < span class = "va" > example_isolates< / span > < span class = "op" > < a href = "https://magrittr.tidyverse.org/reference/pipe.html" class = "external-link" > %> %< / a > < / span > < / span >
< span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > resistance_predict< / a > < / span > < span class = "op" > (< / span > < / span >
< span > col_ab < span class = "op" > =< / span > < span class = "st" > "TZP"< / span > ,< / span >
< span > model < span class = "op" > =< / span > < span class = "st" > "binomial"< / span > < / span >
< span > < span class = "op" > )< / span > < / span >
< span > < / span >
< span > < span class = "co" > # to bind it to object 'predict_TZP' for example:< / span > < / span >
< span > < span class = "va" > predict_TZP< / span > < span class = "op" > < -< / span > < span class = "va" > example_isolates< / span > < span class = "op" > < a href = "https://magrittr.tidyverse.org/reference/pipe.html" class = "external-link" > %> %< / a > < / span > < / span >
< span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > resistance_predict< / a > < / span > < span class = "op" > (< / span > < / span >
< span > col_ab < span class = "op" > =< / span > < span class = "st" > "TZP"< / span > ,< / span >
< span > model < span class = "op" > =< / span > < span class = "st" > "binomial"< / span > < / span >
< span > < span class = "op" > )< / span > < / span > < / code > < / pre > < / div >
2022-10-29 14:24:08 +02:00
< p > The function will look for a date column itself if
< code > col_date< / code > is not set.< / p >
< p > When running any of these commands, a summary of the regression model
will be printed unless using
< code > resistance_predict(..., info = FALSE)< / code > .< / p >
< p > This text is only a printed summary - the actual result (output) of
the function is a < code > data.frame< / code > containing for each year: the
number of observations, the actual observed resistance, the estimated
resistance and the standard error below and above the estimation:< / p >
2022-08-21 17:29:49 +02:00
< div class = "sourceCode" id = "cb3" > < pre class = "downlit sourceCode r" >
2022-08-21 16:59:35 +02:00
< code class = "sourceCode R" > < span > < span class = "va" > predict_TZP< / span > < / span >
2024-02-13 13:53:34 +01:00
< span > < span class = "co" > #> < span style = "color: #949494;" > # A tibble: 33 × 7< / span > < / span > < / span >
2023-02-18 13:17:35 +01:00
< span > < span class = "co" > #> year value se_min se_max observations observed estimated< / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > *< / span > < span style = "color: #949494; font-style: italic;" > < dbl> < / span > < span style = "color: #949494; font-style: italic;" > < dbl> < / span > < span style = "color: #949494; font-style: italic;" > < dbl> < / span > < span style = "color: #949494; font-style: italic;" > < dbl> < / span > < span style = "color: #949494; font-style: italic;" > < int> < / span > < span style = "color: #949494; font-style: italic;" > < dbl> < / span > < span style = "color: #949494; font-style: italic;" > < dbl> < / span > < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 1< / span > < span style = "text-decoration: underline;" > 2< / span > 002 0.2 < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 15 0.2 0.056< span style = "text-decoration: underline;" > 2< / span > < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 2< / span > < span style = "text-decoration: underline;" > 2< / span > 003 0.062< span style = "text-decoration: underline;" > 5< / span > < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 32 0.062< span style = "text-decoration: underline;" > 5< / span > 0.061< span style = "text-decoration: underline;" > 6< / span > < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 3< / span > < span style = "text-decoration: underline;" > 2< / span > 004 0.085< span style = "text-decoration: underline;" > 4< / span > < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 82 0.085< span style = "text-decoration: underline;" > 4< / span > 0.067< span style = "text-decoration: underline;" > 6< / span > < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 4< / span > < span style = "text-decoration: underline;" > 2< / span > 005 0.05 < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 60 0.05 0.074< span style = "text-decoration: underline;" > 1< / span > < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 5< / span > < span style = "text-decoration: underline;" > 2< / span > 006 0.050< span style = "text-decoration: underline;" > 8< / span > < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 59 0.050< span style = "text-decoration: underline;" > 8< / span > 0.081< span style = "text-decoration: underline;" > 2< / span > < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 6< / span > < span style = "text-decoration: underline;" > 2< / span > 007 0.121 < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 66 0.121 0.088< span style = "text-decoration: underline;" > 9< / span > < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 7< / span > < span style = "text-decoration: underline;" > 2< / span > 008 0.041< span style = "text-decoration: underline;" > 7< / span > < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 72 0.041< span style = "text-decoration: underline;" > 7< / span > 0.097< span style = "text-decoration: underline;" > 2< / span > < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 8< / span > < span style = "text-decoration: underline;" > 2< / span > 009 0.016< span style = "text-decoration: underline;" > 4< / span > < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 61 0.016< span style = "text-decoration: underline;" > 4< / span > 0.106 < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 9< / span > < span style = "text-decoration: underline;" > 2< / span > 010 0.056< span style = "text-decoration: underline;" > 6< / span > < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 53 0.056< span style = "text-decoration: underline;" > 6< / span > 0.116 < / span > < / span >
< span > < span class = "co" > #> < span style = "color: #BCBCBC;" > 10< / span > < span style = "text-decoration: underline;" > 2< / span > 011 0.183 < span style = "color: #BB0000;" > NA< / span > < span style = "color: #BB0000;" > NA< / span > 93 0.183 0.127 < / span > < / span >
2024-02-13 13:53:34 +01:00
< span > < span class = "co" > #> < span style = "color: #949494;" > # ℹ 23 more rows< / span > < / span > < / span > < / code > < / pre > < / div >
2022-10-29 14:24:08 +02:00
< p > The function < code > plot< / code > is available in base R, and can be
extended by other packages to depend the output based on the type of
input. We extended its function to cope with resistance predictions:< / p >
2022-08-21 17:29:49 +02:00
< div class = "sourceCode" id = "cb4" > < pre class = "downlit sourceCode r" >
2022-08-21 16:59:35 +02:00
< code class = "sourceCode R" > < span > < span class = "fu" > < a href = "../reference/plot.html" > plot< / a > < / span > < span class = "op" > (< / span > < span class = "va" > predict_TZP< / span > < span class = "op" > )< / span > < / span > < / code > < / pre > < / div >
< p > < img src = "resistance_predict_files/figure-html/unnamed-chunk-4-1.png" width = "720" > < / p >
2022-10-29 14:24:08 +02:00
< p > This is the fastest way to plot the result. It automatically adds the
right axes, error bars, titles, number of available observations and
type of model.< / p >
< p > We also support the < code > ggplot2< / code > package with our custom
2023-01-21 23:53:21 +01:00
function < code > < a href = "../reference/resistance_predict.html" > ggplot_sir_predict()< / a > < / code > to create more appealing
2022-10-29 14:24:08 +02:00
plots:< / p >
2022-08-21 17:29:49 +02:00
< div class = "sourceCode" id = "cb5" > < pre class = "downlit sourceCode r" >
2023-01-21 23:53:21 +01:00
< code class = "sourceCode R" > < span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > ggplot_sir_predict< / a > < / span > < span class = "op" > (< / span > < span class = "va" > predict_TZP< / span > < span class = "op" > )< / span > < / span > < / code > < / pre > < / div >
2022-08-21 16:59:35 +02:00
< p > < img src = "resistance_predict_files/figure-html/unnamed-chunk-5-1.png" width = "720" > < / p >
2022-08-21 17:29:49 +02:00
< div class = "sourceCode" id = "cb6" > < pre class = "downlit sourceCode r" >
2022-08-21 16:59:35 +02:00
< code class = "sourceCode R" > < span > < / span >
< span > < span class = "co" > # choose for error bars instead of a ribbon< / span > < / span >
2023-01-21 23:53:21 +01:00
< span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > ggplot_sir_predict< / a > < / span > < span class = "op" > (< / span > < span class = "va" > predict_TZP< / span > , ribbon < span class = "op" > =< / span > < span class = "cn" > FALSE< / span > < span class = "op" > )< / span > < / span > < / code > < / pre > < / div >
2022-08-21 16:59:35 +02:00
< p > < img src = "resistance_predict_files/figure-html/unnamed-chunk-5-2.png" width = "720" > < / p >
< div class = "section level3" >
< h3 id = "choosing-the-right-model" > Choosing the right model< a class = "anchor" aria-label = "anchor" href = "#choosing-the-right-model" > < / a >
< / h3 >
2022-10-29 14:24:08 +02:00
< p > Resistance is not easily predicted; if we look at vancomycin
resistance in Gram-positive bacteria, the spread (i.e. standard error)
is enormous:< / p >
2022-08-21 17:29:49 +02:00
< div class = "sourceCode" id = "cb7" > < pre class = "downlit sourceCode r" >
2022-08-21 16:59:35 +02:00
< code class = "sourceCode R" > < span > < span class = "va" > example_isolates< / span > < span class = "op" > < a href = "https://magrittr.tidyverse.org/reference/pipe.html" class = "external-link" > %> %< / a > < / span > < / span >
< span > < span class = "fu" > < a href = "https://dplyr.tidyverse.org/reference/filter.html" class = "external-link" > filter< / a > < / span > < span class = "op" > (< / span > < span class = "fu" > < a href = "../reference/mo_property.html" > mo_gramstain< / a > < / span > < span class = "op" > (< / span > < span class = "va" > mo< / span > , language < span class = "op" > =< / span > < span class = "cn" > NULL< / span > < span class = "op" > )< / span > < span class = "op" > ==< / span > < span class = "st" > "Gram-positive"< / span > < span class = "op" > )< / span > < span class = "op" > < a href = "https://magrittr.tidyverse.org/reference/pipe.html" class = "external-link" > %> %< / a > < / span > < / span >
2022-08-28 22:45:38 +02:00
< span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > resistance_predict< / a > < / span > < span class = "op" > (< / span > col_ab < span class = "op" > =< / span > < span class = "st" > "VAN"< / span > , year_min < span class = "op" > =< / span > < span class = "fl" > 2010< / span > , info < span class = "op" > =< / span > < span class = "cn" > FALSE< / span > , model < span class = "op" > =< / span > < span class = "st" > "binomial"< / span > < span class = "op" > )< / span > < span class = "op" > < a href = "https://magrittr.tidyverse.org/reference/pipe.html" class = "external-link" > %> %< / a > < / span > < / span >
2023-01-21 23:53:21 +01:00
< span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > ggplot_sir_predict< / a > < / span > < span class = "op" > (< / span > < span class = "op" > )< / span > < / span > < / code > < / pre > < / div >
2022-08-21 16:59:35 +02:00
< p > < img src = "resistance_predict_files/figure-html/unnamed-chunk-6-1.png" width = "720" > < / p >
2022-10-29 14:24:08 +02:00
< p > Vancomycin resistance could be 100% in ten years, but might remain
very low.< / p >
< p > You can define the model with the < code > model< / code > parameter. The
model chosen above is a generalised linear regression model using a
binomial distribution, assuming that a period of zero resistance was
followed by a period of increasing resistance leading slowly to more and
more resistance.< / p >
2022-08-21 16:59:35 +02:00
< p > Valid values are:< / p >
< table class = "table" >
< colgroup >
< col width = "32%" >
< col width = "25%" >
< col width = "42%" >
< / colgroup >
< thead > < tr class = "header" >
< th > Input values< / th >
< th > Function used by R< / th >
< th > Type of model< / th >
< / tr > < / thead >
< tbody >
< tr class = "odd" >
< td >
2022-10-29 14:24:08 +02:00
< code > "binomial"< / code > or < code > "binom"< / code > or
< code > "logit"< / code >
2022-08-21 16:59:35 +02:00
< / td >
< td > < code > glm(..., family = binomial)< / code > < / td >
< td > Generalised linear model with binomial distribution< / td >
< / tr >
< tr class = "even" >
< td >
< code > "loglin"< / code > or < code > "poisson"< / code >
< / td >
< td > < code > glm(..., family = poisson)< / code > < / td >
< td > Generalised linear model with poisson distribution< / td >
< / tr >
< tr class = "odd" >
< td >
< code > "lin"< / code > or < code > "linear"< / code >
< / td >
< td > < code > < a href = "https://rdrr.io/r/stats/lm.html" class = "external-link" > lm()< / a > < / code > < / td >
< td > Linear model< / td >
< / tr >
< / tbody >
< / table >
2022-10-29 14:24:08 +02:00
< p > For the vancomycin resistance in Gram-positive bacteria, a linear
model might be more appropriate:< / p >
2022-08-21 17:29:49 +02:00
< div class = "sourceCode" id = "cb8" > < pre class = "downlit sourceCode r" >
2022-08-21 16:59:35 +02:00
< code class = "sourceCode R" > < span > < span class = "va" > example_isolates< / span > < span class = "op" > < a href = "https://magrittr.tidyverse.org/reference/pipe.html" class = "external-link" > %> %< / a > < / span > < / span >
< span > < span class = "fu" > < a href = "https://dplyr.tidyverse.org/reference/filter.html" class = "external-link" > filter< / a > < / span > < span class = "op" > (< / span > < span class = "fu" > < a href = "../reference/mo_property.html" > mo_gramstain< / a > < / span > < span class = "op" > (< / span > < span class = "va" > mo< / span > , language < span class = "op" > =< / span > < span class = "cn" > NULL< / span > < span class = "op" > )< / span > < span class = "op" > ==< / span > < span class = "st" > "Gram-positive"< / span > < span class = "op" > )< / span > < span class = "op" > < a href = "https://magrittr.tidyverse.org/reference/pipe.html" class = "external-link" > %> %< / a > < / span > < / span >
2022-08-28 22:45:38 +02:00
< span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > resistance_predict< / a > < / span > < span class = "op" > (< / span > col_ab < span class = "op" > =< / span > < span class = "st" > "VAN"< / span > , year_min < span class = "op" > =< / span > < span class = "fl" > 2010< / span > , info < span class = "op" > =< / span > < span class = "cn" > FALSE< / span > , model < span class = "op" > =< / span > < span class = "st" > "linear"< / span > < span class = "op" > )< / span > < span class = "op" > < a href = "https://magrittr.tidyverse.org/reference/pipe.html" class = "external-link" > %> %< / a > < / span > < / span >
2023-01-21 23:53:21 +01:00
< span > < span class = "fu" > < a href = "../reference/resistance_predict.html" > ggplot_sir_predict< / a > < / span > < span class = "op" > (< / span > < span class = "op" > )< / span > < / span > < / code > < / pre > < / div >
2022-08-21 16:59:35 +02:00
< p > < img src = "resistance_predict_files/figure-html/unnamed-chunk-7-1.png" width = "720" > < / p >
2022-10-29 14:24:08 +02:00
< p > The model itself is also available from the object, as an
< code > attribute< / code > :< / p >
2022-08-21 17:29:49 +02:00
< div class = "sourceCode" id = "cb9" > < pre class = "downlit sourceCode r" >
2022-08-21 16:59:35 +02:00
< code class = "sourceCode R" > < span > < span class = "va" > model< / span > < span class = "op" > < -< / span > < span class = "fu" > < a href = "https://rdrr.io/r/base/attributes.html" class = "external-link" > attributes< / a > < / span > < span class = "op" > (< / span > < span class = "va" > predict_TZP< / span > < span class = "op" > )< / span > < span class = "op" > $< / span > < span class = "va" > model< / span > < / span >
< span > < / span >
< span > < span class = "fu" > < a href = "https://rdrr.io/r/base/summary.html" class = "external-link" > summary< / a > < / span > < span class = "op" > (< / span > < span class = "va" > model< / span > < span class = "op" > )< / span > < span class = "op" > $< / span > < span class = "va" > family< / span > < / span >
2023-02-18 13:17:35 +01:00
< span > < span class = "co" > #> < / span > < / span >
< span > < span class = "co" > #> Family: binomial < / span > < / span >
2024-07-16 15:00:55 +02:00
< span > < span class = "co" > #> Link function: logit< / span > < / span >
< span > < / span >
2022-08-21 16:59:35 +02:00
< span > < span class = "fu" > < a href = "https://rdrr.io/r/base/summary.html" class = "external-link" > summary< / a > < / span > < span class = "op" > (< / span > < span class = "va" > model< / span > < span class = "op" > )< / span > < span class = "op" > $< / span > < span class = "va" > coefficients< / span > < / span >
2023-02-18 13:17:35 +01:00
< span > < span class = "co" > #> Estimate Std. Error z value Pr(> |z|)< / span > < / span >
< span > < span class = "co" > #> (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05< / span > < / span >
< span > < span class = "co" > #> year 0.09883005 0.02295317 4.305725 1.664395e-05< / span > < / span > < / code > < / pre > < / div >
2022-08-21 16:59:35 +02:00
< / div >
< / div >
2024-07-16 15:00:55 +02:00
< / main > < aside class = "col-md-3" > < nav id = "toc" aria-label = "Table of contents" > < h2 > On this page< / h2 >
2022-08-21 16:59:35 +02:00
< / nav > < / aside >
< / div >
< footer > < div class = "pkgdown-footer-left" >
2024-04-23 10:39:01 +02:00
< p > < code > AMR< / code > (for R). Free and open-source, licenced under the < a target = "_blank" href = "https://github.com/msberends/AMR/blob/main/LICENSE" class = "external-link" > GNU General Public License version 2.0 (GPL-2)< / a > .< br > Developed at the < a target = "_blank" href = "https://www.rug.nl" class = "external-link" > University of Groningen< / a > and < a target = "_blank" href = "https://www.umcg.nl" class = "external-link" > University Medical Center Groningen< / a > in The Netherlands.< / p >
2022-08-21 16:59:35 +02:00
< / div >
< div class = "pkgdown-footer-right" >
2024-09-19 14:48:19 +02:00
< p > < a target = "_blank" href = "https://www.rug.nl" class = "external-link" > < img src = "https://github.com/msberends/AMR/raw/main/pkgdown/assets/logo_rug.svg" style = "max-width: 150px;" > < / a > < a target = "_blank" href = "https://www.umcg.nl" class = "external-link" > < img src = "https://github.com/msberends/AMR/raw/main/pkgdown/assets/logo_umcg.svg" style = "max-width: 150px;" > < / a > < / p >
2022-08-21 16:59:35 +02:00
< / div >
< / footer >
< / div >
2024-07-16 15:00:55 +02:00
2022-08-21 16:59:35 +02:00
< / body >
< / html >