2018-02-21 11:52:31 +01:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# AUTHORS #
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# LICENCE #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License version 2.0, #
# as published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# ==================================================================== #
#' Determine first (weighted) isolates
#'
#' Determine first (weighted) isolates of all microorganisms of every patient per episode and (if needed) per specimen type.
#' @param tbl a \code{data.frame} containing isolates.
#' @param col_date column name of the result date (or date that is was received on the lab)
2018-02-26 14:06:31 +01:00
#' @param col_patient_id column name of the unique IDs of the patients
2018-02-21 11:52:31 +01:00
#' @param col_genus column name of the genus of the microorganisms
#' @param col_species column name of the species of the microorganisms
2018-02-27 20:01:02 +01:00
#' @param col_testcode column name of the test codes. Use \code{col_testcode = NA} to \strong{not} exclude certain test codes (like test codes for screening). In that case \code{testcodes_exclude} will be ignored.
2018-02-21 11:52:31 +01:00
#' @param col_specimen column name of the specimen type or group
#' @param col_icu column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU)
#' @param col_keyantibiotics column name of the key antibiotics to determine first \emph{weighted} isolates, see \code{\link{key_antibiotics}}.
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again
#' @param testcodes_exclude character vector with test codes that should be excluded (caseINsensitive)
#' @param icu_exclude logical whether ICU isolates should be excluded
#' @param filter_specimen specimen group or type that should be excluded
#' @param output_logical return output as \code{logical} (will else the values \code{0} or \code{1})
2018-02-27 20:01:02 +01:00
#' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate, see Details
2018-02-21 11:52:31 +01:00
#' @param info print progress
2018-02-27 20:01:02 +01:00
#' @details \strong{Why this is so important} \cr
#' To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode \href{https://www.ncbi.nlm.nih.gov/pubmed/17304462}{[1]}. If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all \emph{S. aureus} isolates would be overestimated, because you included this MRSA more than once. It would be \href{https://en.wikipedia.org/wiki/Selection_bias}{selection bias}.
2018-03-13 11:57:30 +01:00
#'
#' \strong{Using parameter \code{points_threshold}} \cr
2018-02-27 20:01:02 +01:00
#' To compare key antibiotics, the difference between antimicrobial interpretations will be measured. A difference from I to S|R (or vice versa) means 0.5 points. A difference from S to R (or vice versa) means 1 point. When the sum of points exceeds \code{points_threshold}, an isolate will be (re)selected as a first weighted isolate.
2018-02-21 11:52:31 +01:00
#' @keywords isolate isolates first
2018-02-26 12:15:52 +01:00
#' @export
2018-02-21 11:52:31 +01:00
#' @importFrom dplyr arrange_at lag between row_number filter mutate arrange
#' @return A vector to add to table, see Examples.
#' @examples
#' \dontrun{
#'
2018-02-22 20:48:48 +01:00
#' # set key antibiotics to a new variable
2018-02-21 11:52:31 +01:00
#' tbl$keyab <- key_antibiotics(tbl)
#'
#' tbl$first_isolate <-
#' first_isolate(tbl)
#'
#' tbl$first_isolate_weighed <-
#' first_isolate(tbl,
#' col_keyantibiotics = 'keyab')
#'
#' tbl$first_blood_isolate <-
#' first_isolate(tbl,
#' filter_specimen = 'Blood')
#'
#' tbl$first_blood_isolate_weighed <-
#' first_isolate(tbl,
#' filter_specimen = 'Blood',
#' col_keyantibiotics = 'keyab')
#'
#' tbl$first_urine_isolate <-
#' first_isolate(tbl,
#' filter_specimen = 'Urine')
#'
#' tbl$first_urine_isolate_weighed <-
#' first_isolate(tbl,
#' filter_specimen = 'Urine',
#' col_keyantibiotics = 'keyab')
#'
#' tbl$first_resp_isolate <-
#' first_isolate(tbl,
#' filter_specimen = 'Respiratory')
#'
#' tbl$first_resp_isolate_weighed <-
#' first_isolate(tbl,
#' filter_specimen = 'Respiratory',
#' col_keyantibiotics = 'keyab')
#' }
first_isolate <- function ( tbl ,
col_date ,
2018-02-26 14:06:31 +01:00
col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_testcode = NA ,
col_specimen ,
col_icu ,
col_keyantibiotics = NA ,
episode_days = 365 ,
testcodes_exclude = ' ' ,
icu_exclude = FALSE ,
filter_specimen = NA ,
output_logical = TRUE ,
2018-02-27 20:01:02 +01:00
points_threshold = 2 ,
2018-02-21 11:52:31 +01:00
info = TRUE ) {
# controleren of kolommen wel bestaan
check_columns_existance <- function ( column , tblname = tbl ) {
if ( NROW ( tblname ) <= 1 | NCOL ( tblname ) <= 1 ) {
stop ( ' Please check tbl for existance.' )
}
if ( ! is.na ( column ) ) {
if ( ! ( column %in% colnames ( tblname ) ) ) {
stop ( ' Column ' , column , ' not found.' )
}
}
}
check_columns_existance ( col_date )
2018-02-26 14:06:31 +01:00
check_columns_existance ( col_patient_id )
2018-02-21 11:52:31 +01:00
check_columns_existance ( col_genus )
check_columns_existance ( col_species )
check_columns_existance ( col_testcode )
check_columns_existance ( col_icu )
check_columns_existance ( col_keyantibiotics )
if ( is.na ( col_testcode ) ) {
testcodes_exclude <- NA
}
# testcodes verwijderen die ingevuld zijn
if ( ! is.na ( testcodes_exclude [1 ] ) & testcodes_exclude [1 ] != ' ' & info == TRUE ) {
cat ( ' Isolates from these test codes will be ignored:\n' , toString ( testcodes_exclude ) , ' \n' )
}
if ( is.na ( col_icu ) ) {
icu_exclude <- FALSE
} else {
tbl <- tbl %>%
mutate ( col_icu = tbl %>% pull ( col_icu ) %>% as.logical ( ) )
}
specgroup.notice <- ' '
weighted.notice <- ' '
# filteren op materiaalgroep en sleutelantibiotica gebruiken wanneer deze ingevuld zijn
if ( ! is.na ( filter_specimen ) & filter_specimen != ' ' ) {
check_columns_existance ( col_specimen , tbl )
if ( info == TRUE ) {
cat ( ' Isolates other than of specimen group \'' , filter_specimen , ' \' will be ignored. ' , sep = ' ' )
}
} else {
filter_specimen <- ' '
}
if ( col_keyantibiotics %in% c ( NA , ' ' ) ) {
col_keyantibiotics <- ' '
} else {
tbl <- tbl %>% mutate ( key_ab = tbl %>% pull ( col_keyantibiotics ) )
}
if ( is.na ( testcodes_exclude [1 ] ) ) {
testcodes_exclude <- ' '
}
# nieuwe dataframe maken met de oorspronkelijke rij-index, 0-bepaling en juiste sortering
#cat('Sorting table...')
tbl <- tbl %>%
mutate ( first_isolate_row_index = 1 : nrow ( tbl ) ,
eersteisolaatbepaling = 0 ,
date_lab = tbl %>% pull ( col_date ) ,
2018-02-26 14:06:31 +01:00
patient_id = tbl %>% pull ( col_patient_id ) ,
species = tbl %>% pull ( col_species ) ,
genus = tbl %>% pull ( col_genus ) ) %>%
mutate ( species = if_else ( is.na ( species ) , ' ' , species ) ,
2018-02-21 11:52:31 +01:00
genus = if_else ( is.na ( genus ) , ' ' , genus ) )
if ( filter_specimen == ' ' ) {
if ( icu_exclude == FALSE ) {
if ( info == TRUE ) {
cat ( ' Isolates from ICU will *NOT* be ignored.\n' )
}
tbl <- tbl %>%
2018-02-26 14:06:31 +01:00
arrange_at ( c ( col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_date ) )
row.start <- 1
row.end <- nrow ( tbl )
} else {
if ( info == TRUE ) {
cat ( ' Isolates from ICU will be ignored.\n' )
}
tbl <- tbl %>%
arrange_at ( c ( col_icu ,
2018-02-26 14:06:31 +01:00
col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_date ) )
suppressWarnings (
row.start <- which ( tbl %>% pull ( col_icu ) == FALSE ) %>% min ( na.rm = TRUE )
)
suppressWarnings (
row.end <- which ( tbl %>% pull ( col_icu ) == FALSE ) %>% max ( na.rm = TRUE )
)
}
} else {
# sorteren op materiaal en alleen die rijen analyseren om tijd te besparen
if ( icu_exclude == FALSE ) {
if ( info == TRUE ) {
cat ( ' Isolates from ICU will *NOT* be ignored.\n' )
}
tbl <- tbl %>%
arrange_at ( c ( col_specimen ,
2018-02-26 14:06:31 +01:00
col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_date ) )
suppressWarnings (
row.start <- which ( tbl %>% pull ( col_specimen ) == filter_specimen ) %>% min ( na.rm = TRUE )
)
suppressWarnings (
row.end <- which ( tbl %>% pull ( col_specimen ) == filter_specimen ) %>% max ( na.rm = TRUE )
)
} else {
if ( info == TRUE ) {
cat ( ' Isolates from ICU will be ignored.\n' )
}
tbl <- tbl %>%
arrange_at ( c ( col_icu ,
col_specimen ,
2018-02-26 14:06:31 +01:00
col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_date ) )
suppressWarnings (
row.start <- which ( tbl %>% pull ( col_specimen ) == filter_specimen
& tbl %>% pull ( col_icu ) == FALSE ) %>% min ( na.rm = TRUE )
)
suppressWarnings (
row.end <- which ( tbl %>% pull ( col_specimen ) == filter_specimen
& tbl %>% pull ( col_icu ) == FALSE ) %>% max ( na.rm = TRUE )
)
}
}
if ( abs ( row.start ) == Inf | abs ( row.end ) == Inf ) {
if ( info == TRUE ) {
cat ( ' No isolates found.\n' )
}
# NA's maken waar genus niet beschikbaar is
tbl <- tbl %>%
mutate ( real_first_isolate = if_else ( genus == ' ' , NA , FALSE ) )
if ( output_logical == FALSE ) {
tbl $ real_first_isolate <- tbl %>% pull ( real_first_isolate ) %>% as.integer ( )
}
return ( tbl %>% pull ( real_first_isolate ) )
}
scope.size <- tbl %>%
filter ( row_number ( ) %>%
between ( row.start ,
row.end ) ,
genus != ' ' ) %>%
nrow ( )
# Analyse van eerste isolaat ----
all_first <- tbl %>%
mutate ( other_pat_or_mo = if_else ( patient_id == lag ( patient_id )
& genus == lag ( genus )
& species == lag ( species ) ,
FALSE ,
TRUE ) ,
days_diff = 0 ) %>%
mutate ( days_diff = if_else ( other_pat_or_mo == FALSE ,
( date_lab - lag ( date_lab ) ) + lag ( days_diff ) ,
0 ) )
if ( col_keyantibiotics != ' ' ) {
if ( info == TRUE ) {
2018-02-27 20:01:02 +01:00
cat ( paste0 ( ' Comparing key antibiotics for first weighted isolates (using points threshold of '
, points_threshold , ' )...\n' ) )
2018-02-21 11:52:31 +01:00
}
all_first <- all_first %>%
mutate ( key_ab_lag = lag ( key_ab ) ) %>%
2018-02-27 20:01:02 +01:00
mutate ( key_ab_other = ! key_antibiotics_equal ( x = key_ab ,
y = key_ab_lag ,
points_threshold = points_threshold ,
info = info ) ) %>%
2018-02-21 11:52:31 +01:00
mutate (
real_first_isolate =
if_else (
between ( row_number ( ) , row.start , row.end )
& genus != ' '
& ( other_pat_or_mo
| days_diff >= episode_days
| key_ab_other ) ,
TRUE ,
FALSE ) )
if ( info == TRUE ) {
cat ( ' \n' )
}
} else {
all_first <- all_first %>%
mutate (
real_first_isolate =
if_else (
between ( row_number ( ) , row.start , row.end )
& genus != ' '
& ( other_pat_or_mo
| days_diff >= episode_days ) ,
TRUE ,
FALSE ) )
}
# allereerst isolaat als TRUE
all_first [row.start , ' real_first_isolate' ] <- TRUE
# geen testen die uitgesloten moeten worden, of ICU
if ( ! is.na ( col_testcode ) ) {
all_first [which ( all_first [ , col_testcode ] %in% tolower ( testcodes_exclude ) ) , ' real_first_isolate' ] <- FALSE
}
if ( icu_exclude == TRUE ) {
all_first [which ( all_first [ , col_icu ] == TRUE ) , ' real_first_isolate' ] <- FALSE
}
# NA's maken waar genus niet beschikbaar is
all_first <- all_first %>%
mutate ( real_first_isolate = if_else ( genus == ' ' , NA , real_first_isolate ) )
all_first <- all_first %>%
arrange ( first_isolate_row_index ) %>%
pull ( real_first_isolate )
if ( info == TRUE ) {
cat ( paste0 ( ' \nFound ' ,
all_first %>% sum ( na.rm = TRUE ) ,
' first ' , weighted.notice , ' isolates (' ,
( all_first %>% sum ( na.rm = TRUE ) / scope.size ) %>% percent ( ) ,
' of isolates in scope [where genus was not empty] and ' ,
( all_first %>% sum ( na.rm = TRUE ) / tbl %>% nrow ( ) ) %>% percent ( ) ,
' of total)\n' ) )
}
if ( output_logical == FALSE ) {
all_first <- all_first %>% as.integer ( )
}
all_first
}
#' Key antibiotics based on bacteria ID
#'
#' @param tbl table with antibiotics coloms, like \code{amox} and \code{amcl}.
#' @param col_bactcode column of bacteria IDs in \code{tbl}; these should occur in \code{bactlist$bactid}, see \code{\link{bactlist}}
#' @param info print warnings
#' @param amcl,amox,cfot,cfta,cftr,cfur,cipr,clar,clin,clox,doxy,gent,line,mero,peni,pita,rifa,teic,trsu,vanc column names of antibiotics.
#' @export
#' @importFrom dplyr %>% mutate if_else
2018-02-22 20:48:48 +01:00
#' @return Character of length 1.
2018-02-21 11:52:31 +01:00
#' @seealso \code{\link{mo_property}} \code{\link{ablist}}
2018-02-22 20:48:48 +01:00
#' @examples
#' \donttest{
#' #' # set key antibiotics to a new variable
#' tbl$keyab <- key_antibiotics(tbl)
#' }
2018-02-21 11:52:31 +01:00
key_antibiotics <- function ( tbl ,
2018-02-26 10:53:54 +01:00
col_bactcode = ' bactid' ,
2018-02-21 11:52:31 +01:00
info = TRUE ,
amcl = ' amcl' ,
amox = ' amox' ,
cfot = ' cfot' ,
cfta = ' cfta' ,
cftr = ' cftr' ,
cfur = ' cfur' ,
cipr = ' cipr' ,
clar = ' clar' ,
clin = ' clin' ,
clox = ' clox' ,
doxy = ' doxy' ,
gent = ' gent' ,
line = ' line' ,
mero = ' mero' ,
peni = ' peni' ,
pita = ' pita' ,
rifa = ' rifa' ,
teic = ' teic' ,
trsu = ' trsu' ,
vanc = ' vanc' ) {
keylist <- character ( length = nrow ( tbl ) )
# check columns
col.list <- c ( amox , cfot , cfta , cftr , cfur , cipr , clar ,
clin , clox , doxy , gent , line , mero , peni ,
pita , rifa , teic , trsu , vanc )
col.list <- col.list [ ! is.na ( col.list ) ]
if ( ! all ( col.list %in% colnames ( tbl ) ) ) {
if ( info == TRUE ) {
warning ( ' These columns do not exist and will be ignored:\n' ,
col.list [ ! ( col.list %in% colnames ( tbl ) ) ] %>% toString ( ) ,
immediate. = TRUE ,
call. = FALSE )
}
}
# bactlist aan vastknopen
tbl <- tbl %>% left_join_bactlist ( col_bactcode )
tbl $ key_ab <- NA_character_
# Staphylococcus
list_ab <- c ( clox , trsu , teic , vanc , doxy , line , clar , rifa )
list_ab <- list_ab [list_ab %in% colnames ( tbl ) ]
tbl <- tbl %>% mutate ( key_ab =
if_else ( genus == ' Staphylococcus' ,
apply ( X = tbl [ , list_ab ] ,
MARGIN = 1 ,
FUN = function ( x ) paste ( x , collapse = " " ) ) ,
key_ab ) )
# Rest of Gram +
list_ab <- c ( peni , amox , teic , vanc , clin , line , clar , trsu )
list_ab <- list_ab [list_ab %in% colnames ( tbl ) ]
tbl <- tbl %>% mutate ( key_ab =
if_else ( gramstain %like% ' ^Positi[e]?ve' ,
apply ( X = tbl [ , list_ab ] ,
MARGIN = 1 ,
FUN = function ( x ) paste ( x , collapse = " " ) ) ,
key_ab ) )
# Gram -
list_ab <- c ( amox , amcl , pita , cfur , cfot , cfta , cftr , mero , cipr , trsu , gent )
list_ab <- list_ab [list_ab %in% colnames ( tbl ) ]
tbl <- tbl %>% mutate ( key_ab =
if_else ( gramstain %like% ' ^Negati[e]?ve' ,
apply ( X = tbl [ , list_ab ] ,
MARGIN = 1 ,
FUN = function ( x ) paste ( x , collapse = " " ) ) ,
key_ab ) )
# format
tbl <- tbl %>%
mutate ( key_ab = gsub ( ' (NA|NULL)' , ' -' , key_ab ) %>% toupper ( ) )
tbl $ key_ab
}
2018-02-27 20:01:02 +01:00
#' @importFrom dplyr progress_estimated %>%
#' @noRd
key_antibiotics_equal <- function ( x , y , points_threshold = 2 , info = FALSE ) {
# x is active row, y is lag
2018-02-22 20:48:48 +01:00
2018-02-21 11:52:31 +01:00
if ( length ( x ) != length ( y ) ) {
stop ( ' Length of `x` and `y` must be equal.' )
}
result <- logical ( length ( x ) )
if ( info == TRUE ) {
2018-02-27 20:01:02 +01:00
p <- dplyr :: progress_estimated ( length ( x ) )
2018-02-21 11:52:31 +01:00
}
for ( i in 1 : length ( x ) ) {
if ( info == TRUE ) {
2018-02-27 20:01:02 +01:00
p $ tick ( ) $ print ( )
2018-02-21 11:52:31 +01:00
}
if ( is.na ( x [i ] ) ) {
x [i ] <- ' '
}
if ( is.na ( y [i ] ) ) {
y [i ] <- ' '
}
if ( nchar ( x [i ] ) != nchar ( y [i ] ) ) {
result [i ] <- FALSE
} else if ( x [i ] == ' ' & y [i ] == ' ' ) {
result [i ] <- TRUE
} else {
2018-02-27 20:01:02 +01:00
# count points for every single character:
# - no change is 0 points
# - I <-> S|R is 0.5 point
# - S|R <-> R|S is 1 point
# use the levels of as.rsi (S = 1, I = 2, R = 3)
x2 <- strsplit ( x [i ] , " " ) [ [1 ] ] %>% as.rsi ( ) %>% as.double ( )
y2 <- strsplit ( y [i ] , " " ) [ [1 ] ] %>% as.rsi ( ) %>% as.double ( )
2018-02-21 11:52:31 +01:00
2018-02-27 20:01:02 +01:00
points <- ( x2 - y2 ) %>% abs ( ) %>% sum ( na.rm = TRUE )
result [i ] <- ( ( points / 2 ) >= points_threshold )
2018-02-21 11:52:31 +01:00
}
}
if ( info == TRUE ) {
cat ( ' \n' )
}
result
}