2018-02-21 11:52:31 +01:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# AUTHORS #
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# LICENCE #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License version 2.0, #
# as published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# ==================================================================== #
#' Resistance of isolates in data.frame
#'
#' \strong{NOTE: use \code{\link{rsi}} in dplyr functions like \code{\link[dplyr]{summarise}}.} \cr Calculate the percentage of S, SI, I, IR or R of a \code{data.frame} containing isolates.
#' @param tbl \code{data.frame} containing columns with antibiotic interpretations.
2018-03-23 14:46:02 +01:00
#' @param ab character vector with 1, 2 or 3 antibiotics that occur as column names in \code{tbl}, like \code{ab = c("amox", "amcl")}
2018-02-21 11:52:31 +01:00
#' @param interpretation antimicrobial interpretation of which the portion must be calculated. Valid values are \code{"S"}, \code{"SI"}, \code{"I"}, \code{"IR"} or \code{"R"}.
#' @param minimum minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA} with a warning (when \code{warning = TRUE}).
#' @param percent return output as percent (text), will else (at default) be a double
#' @param info calculate the amount of available isolates and print it, like \code{n = 423}
#' @param warning show a warning when the available amount of isolates is below \code{minimum}
#' @details Remember that you should filter your table to let it contain \strong{only first isolates}!
#' @keywords rsi antibiotics isolate isolates
#' @return Double or, when \code{percent = TRUE}, a character.
#' @export
#' @importFrom dplyr %>% n_distinct filter filter_at pull vars all_vars any_vars
#' @seealso \code{\link{rsi}} for the function that can be used with \code{\link[dplyr]{summarise}} directly.
#' @examples
#' \dontrun{
#' rsi_df(tbl_with_bloodcultures, 'amcl')
#'
#' rsi_df(tbl_with_bloodcultures, c('amcl', 'gent'), interpretation = 'IR')
#'
#' library(dplyr)
#' # calculate current empiric therapy of Helicobacter gastritis:
#' my_table %>%
2018-04-02 16:05:09 +02:00
#' filter(first_isolate == TRUE,
2018-02-21 11:52:31 +01:00
#' genus == "Helicobacter") %>%
2018-03-23 14:46:02 +01:00
#' rsi_df(ab = c("amox", "metr"))
2018-02-21 11:52:31 +01:00
#' }
rsi_df <- function ( tbl ,
2018-03-23 14:46:02 +01:00
ab ,
2018-02-21 11:52:31 +01:00
interpretation = ' IR' ,
minimum = 30 ,
percent = FALSE ,
info = TRUE ,
warning = TRUE ) {
2018-03-23 14:46:02 +01:00
# in case tbl$interpretation already exists:
interpretations_to_check <- paste ( interpretation , collapse = " " )
2018-04-02 16:05:09 +02:00
2018-03-23 14:46:02 +01:00
# validate:
if ( min ( grepl ( ' ^[a-z]{3,4}$' , ab ) ) == 0 &
min ( grepl ( ' ^rsi[1-2]$' , ab ) ) == 0 ) {
for ( i in 1 : length ( ab ) ) {
ab [i ] <- paste0 ( ' rsi' , i )
2018-02-21 11:52:31 +01:00
}
}
2018-03-23 14:46:02 +01:00
if ( ! grepl ( ' ^(S|SI|IS|I|IR|RI|R){1}$' , interpretations_to_check ) ) {
2018-02-21 11:52:31 +01:00
stop ( ' Invalid `interpretation`; must be "S", "SI", "I", "IR", or "R".' )
}
if ( ' is_ic' %in% colnames ( tbl ) ) {
2018-03-27 17:43:42 +02:00
if ( n_distinct ( tbl $ is_ic ) > 1 & warning == TRUE ) {
2018-02-21 11:52:31 +01:00
warning ( ' Dataset contains isolates from the Intensive Care. Exclude them from proper epidemiological analysis.' )
}
}
2018-04-02 16:05:09 +02:00
2018-03-23 14:46:02 +01:00
# transform when checking for different results
if ( interpretations_to_check %in% c ( ' SI' , ' IS' ) ) {
for ( i in 1 : length ( ab ) ) {
lijst <- tbl [ , ab [i ] ]
2018-02-21 11:52:31 +01:00
if ( ' I' %in% lijst ) {
2018-03-23 14:46:02 +01:00
tbl [which ( tbl [ab [i ] ] == ' I' ) , ] [ab [i ] ] <- ' S'
2018-02-21 11:52:31 +01:00
}
}
2018-03-23 14:46:02 +01:00
interpretations_to_check <- ' S'
2018-02-21 11:52:31 +01:00
}
2018-03-23 14:46:02 +01:00
if ( interpretations_to_check %in% c ( ' RI' , ' IR' ) ) {
for ( i in 1 : length ( ab ) ) {
lijst <- tbl [ , ab [i ] ]
2018-02-21 11:52:31 +01:00
if ( ' I' %in% lijst ) {
2018-03-23 14:46:02 +01:00
tbl [which ( tbl [ab [i ] ] == ' I' ) , ] [ab [i ] ] <- ' R'
2018-02-21 11:52:31 +01:00
}
}
2018-03-23 14:46:02 +01:00
interpretations_to_check <- ' R'
2018-02-21 11:52:31 +01:00
}
2018-03-23 14:46:02 +01:00
# get fraction
if ( length ( ab ) == 1 ) {
2018-02-21 11:52:31 +01:00
numerator <- tbl %>%
2018-03-23 14:46:02 +01:00
filter ( pull ( ., ab [1 ] ) == interpretations_to_check ) %>%
2018-02-21 11:52:31 +01:00
nrow ( )
2018-03-23 14:46:02 +01:00
2018-02-21 11:52:31 +01:00
denominator <- tbl %>%
2018-03-23 14:46:02 +01:00
filter ( pull ( ., ab [1 ] ) %in% c ( " S" , " I" , " R" ) ) %>%
2018-02-21 11:52:31 +01:00
nrow ( )
2018-04-02 16:05:09 +02:00
2018-03-23 14:46:02 +01:00
} else if ( length ( ab ) == 2 ) {
2018-02-21 11:52:31 +01:00
numerator <- tbl %>%
2018-03-23 14:46:02 +01:00
filter_at ( vars ( ab [1 ] , ab [2 ] ) ,
any_vars ( . == interpretations_to_check ) ) %>%
filter_at ( vars ( ab [1 ] , ab [2 ] ) ,
2018-02-21 11:52:31 +01:00
all_vars ( . %in% c ( " S" , " R" , " I" ) ) ) %>%
nrow ( )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
denominator <- tbl %>%
2018-03-23 14:46:02 +01:00
filter_at ( vars ( ab [1 ] , ab [2 ] ) ,
2018-02-21 11:52:31 +01:00
all_vars ( . %in% c ( " S" , " R" , " I" ) ) ) %>%
nrow ( )
2018-04-02 16:05:09 +02:00
2018-03-23 14:46:02 +01:00
} else if ( length ( ab ) == 3 ) {
2018-02-21 11:52:31 +01:00
numerator <- tbl %>%
2018-03-23 14:46:02 +01:00
filter_at ( vars ( ab [1 ] , ab [2 ] , ab [3 ] ) ,
any_vars ( . == interpretations_to_check ) ) %>%
filter_at ( vars ( ab [1 ] , ab [2 ] , ab [3 ] ) ,
2018-02-21 11:52:31 +01:00
all_vars ( . %in% c ( " S" , " R" , " I" ) ) ) %>%
nrow ( )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
denominator <- tbl %>%
2018-03-23 14:46:02 +01:00
filter_at ( vars ( ab [1 ] , ab [2 ] , ab [3 ] ) ,
2018-02-21 11:52:31 +01:00
all_vars ( . %in% c ( " S" , " R" , " I" ) ) ) %>%
nrow ( )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
} else {
stop ( ' Maximum of 3 drugs allowed.' )
}
2018-04-02 16:05:09 +02:00
2018-03-23 14:46:02 +01:00
# build text part
2018-02-21 11:52:31 +01:00
if ( info == TRUE ) {
cat ( ' n =' , denominator )
info.txt1 <- percent ( denominator / nrow ( tbl ) )
if ( denominator == 0 ) {
info.txt1 <- ' none'
}
info.txt2 <- gsub ( ' ,' , ' and' ,
2018-03-23 14:46:02 +01:00
ab %>%
abname ( tolower = TRUE ) %>%
2018-02-21 11:52:31 +01:00
toString ( ) , fixed = TRUE )
info.txt2 <- gsub ( ' rsi1 and rsi2' , ' these two drugs' , info.txt2 , fixed = TRUE )
info.txt2 <- gsub ( ' rsi1' , ' this drug' , info.txt2 , fixed = TRUE )
cat ( paste0 ( ' (of ' , nrow ( tbl ) , ' in total; ' , info.txt1 , ' tested on ' , info.txt2 , ' )\n' ) )
}
2018-04-02 16:05:09 +02:00
2018-03-23 14:46:02 +01:00
# calculate and format
2018-02-21 11:52:31 +01:00
y <- numerator / denominator
if ( percent == TRUE ) {
y <- percent ( y )
}
if ( denominator < minimum ) {
if ( warning == TRUE ) {
2018-03-23 14:46:02 +01:00
warning ( paste0 ( ' TOO FEW ISOLATES OF ' , toString ( ab ) , ' (n = ' , denominator , ' , n < ' , minimum , ' ); NO RESULT.' ) )
2018-02-21 11:52:31 +01:00
}
y <- NA
}
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
# output
y
}
#' Resistance of isolates
#'
2018-02-22 20:48:48 +01:00
#' This function can be used in \code{dplyr}s \code{\link[dplyr]{summarise}}, see \emph{Examples}. Calculate the percentage S, SI, I, IR or R of a vector of isolates.
2018-02-21 11:52:31 +01:00
#' @param ab1,ab2 list with interpretations of an antibiotic
#' @inheritParams rsi_df
#' @details This function uses the \code{\link{rsi_df}} function internally.
#' @keywords rsi antibiotics isolate isolates
#' @return Double or, when \code{percent = TRUE}, a character.
#' @export
#' @examples
#' \dontrun{
#' tbl %>%
2018-02-22 20:48:48 +01:00
#' group_by(hospital) %>%
#' summarise(cipr = rsi(cipr))
2018-04-02 16:05:09 +02:00
#'
2018-02-22 20:48:48 +01:00
#' tbl %>%
2018-02-21 11:52:31 +01:00
#' group_by(year, hospital) %>%
#' summarise(
#' isolates = n(),
2018-02-22 20:48:48 +01:00
#' cipro = rsi(cipr %>% as.rsi(), percent = TRUE),
#' amoxi = rsi(amox %>% as.rsi(), percent = TRUE))
2018-04-02 16:05:09 +02:00
#'
2018-02-22 20:48:48 +01:00
#' rsi(as.rsi(isolates$amox))
2018-02-21 11:52:31 +01:00
#'
2018-02-22 20:48:48 +01:00
#' rsi(as.rsi(isolates$amcl), interpretation = "S")
2018-02-21 11:52:31 +01:00
#' }
rsi <- function ( ab1 , ab2 = NA , interpretation = ' IR' , minimum = 30 , percent = FALSE , info = FALSE , warning = FALSE ) {
2018-03-23 14:46:02 +01:00
ab1.name <- deparse ( substitute ( ab1 ) )
if ( ab1.name %like% ' .[$].' ) {
ab1.name <- unlist ( strsplit ( ab1.name , " $" , fixed = TRUE ) )
ab1.name <- ab1.name [length ( ab1.name ) ]
}
if ( ! ab1.name %like% ' ^[a-z]{3,4}$' ) {
ab1.name <- ' rsi1'
}
ab2.name <- deparse ( substitute ( ab2 ) )
if ( ab2.name %like% ' .[$].' ) {
ab2.name <- unlist ( strsplit ( ab2.name , " $" , fixed = TRUE ) )
ab2.name <- ab2.name [length ( ab2.name ) ]
2018-02-21 11:52:31 +01:00
}
2018-03-23 14:46:02 +01:00
if ( ! ab2.name %like% ' ^[a-z]{3,4}$' ) {
ab2.name <- ' rsi2'
2018-02-21 11:52:31 +01:00
}
2018-04-02 16:05:09 +02:00
2018-03-23 14:46:02 +01:00
interpretation <- paste ( interpretation , collapse = " " )
2018-04-02 16:05:09 +02:00
2018-03-23 14:46:02 +01:00
tbl <- tibble ( rsi1 = ab1 , rsi2 = ab2 )
colnames ( tbl ) <- c ( ab1.name , ab2.name )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
if ( length ( ab2 ) == 1 ) {
return ( rsi_df ( tbl = tbl ,
2018-03-23 14:46:02 +01:00
ab = ab1.name ,
2018-02-21 11:52:31 +01:00
interpretation = interpretation ,
minimum = minimum ,
percent = percent ,
info = info ,
warning = warning ) )
} else {
if ( length ( ab1 ) != length ( ab2 ) ) {
stop ( ' `ab1` (n = ' , length ( ab1 ) , ' ) and `ab2` (n = ' , length ( ab2 ) , ' ) must be of same length.' , call. = FALSE )
}
if ( interpretation != ' S' ) {
warning ( ' `interpretation` is not set to S, albeit analysing a combination therapy.' )
}
return ( rsi_df ( tbl = tbl ,
2018-03-23 14:46:02 +01:00
ab = c ( ab1.name , ab2.name ) ,
2018-02-21 11:52:31 +01:00
interpretation = interpretation ,
minimum = minimum ,
percent = percent ,
info = info ,
warning = warning ) )
}
}
#' Predict antimicrobial resistance
#'
2018-02-27 20:01:02 +01:00
#' Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns \code{se_min} and \code{se_max}. See Examples for a real live example.
2018-02-21 11:52:31 +01:00
#' @param tbl table that contains columns \code{col_ab} and \code{col_date}
2018-02-27 20:01:02 +01:00
#' @param col_ab column name of \code{tbl} with antimicrobial interpretations (\code{R}, \code{I} and \code{S}), supports tidyverse-like quotation
#' @param col_date column name of the date, will be used to calculate years if this column doesn't consist of years already, supports tidyverse-like quotation
2018-02-21 11:52:31 +01:00
#' @param year_max highest year to use in the prediction model, deafults to 15 years after today
#' @param year_every unit of sequence between lowest year found in the data and \code{year_max}
#' @param model the statistical model of choice. Valid values are \code{"binomial"} (or \code{"binom"} or \code{"logit"}) or \code{"loglin"} or \code{"linear"} (or \code{"lin"}).
#' @param I_as_R treat \code{I} as \code{R}
#' @param preserve_measurements overwrite predictions of years that are actually available in the data, with the original data. The standard errors of those years will be \code{NA}.
#' @param info print textual analysis with the name and \code{\link{summary}} of the model.
#' @return \code{data.frame} with columns \code{year}, \code{probR}, \code{se_min} and \code{se_max}.
#' @seealso \code{\link{lm}} \cr \code{\link{glm}}
#' @export
#' @importFrom dplyr %>% pull mutate group_by_at summarise filter
#' @importFrom reshape2 dcast
#' @examples
#' \dontrun{
#' # use it directly:
2018-02-26 15:53:09 +01:00
#' rsi_predict(tbl = tbl[which(first_isolate == TRUE & genus == "Haemophilus"),],
2018-02-27 20:01:02 +01:00
#' col_ab = "amcl", col_date = "date")
2018-04-02 16:05:09 +02:00
#'
2018-02-21 11:52:31 +01:00
#' # or with dplyr so you can actually read it:
2018-02-22 20:48:48 +01:00
#' library(dplyr)
2018-02-21 11:52:31 +01:00
#' tbl %>%
#' filter(first_isolate == TRUE,
#' genus == "Haemophilus") %>%
2018-02-27 20:01:02 +01:00
#' rsi_predict(amcl, date)
#' }
2018-02-21 11:52:31 +01:00
#'
#'
2018-02-27 20:01:02 +01:00
#' # real live example:
#' library(dplyr)
#' septic_patients %>%
#' # get bacteria properties like genus and species
2018-04-02 16:05:09 +02:00
#' left_join_microorganisms("bactid") %>%
2018-02-27 20:01:02 +01:00
#' # calculate first isolates
2018-04-02 16:05:09 +02:00
#' mutate(first_isolate =
2018-02-27 20:01:02 +01:00
#' first_isolate(.,
#' "date",
#' "patient_id",
2018-03-27 17:43:42 +02:00
#' "bactid",
2018-02-27 20:01:02 +01:00
#' col_specimen = NA,
2018-04-02 16:05:09 +02:00
#' col_icu = NA)) %>%
2018-02-27 20:01:02 +01:00
#' # filter on first E. coli isolates
2018-04-02 16:05:09 +02:00
#' filter(genus == "Escherichia",
#' species == "coli",
2018-02-27 20:01:02 +01:00
#' first_isolate == TRUE) %>%
#' # predict resistance of cefotaxime for next years
2018-04-02 16:05:09 +02:00
#' rsi_predict(col_ab = "cfot",
#' col_date = "date",
2018-02-27 20:01:02 +01:00
#' year_max = 2025,
#' preserve_measurements = FALSE)
#'
2018-02-21 11:52:31 +01:00
rsi_predict <- function ( tbl ,
col_ab ,
2018-02-26 10:53:54 +01:00
col_date ,
2018-02-21 11:52:31 +01:00
year_max = as.integer ( format ( as.Date ( Sys.Date ( ) ) , ' %Y' ) ) + 15 ,
year_every = 1 ,
model = ' binomial' ,
I_as_R = TRUE ,
preserve_measurements = TRUE ,
info = TRUE ) {
2018-04-02 16:05:09 +02:00
2018-03-27 17:43:42 +02:00
if ( nrow ( tbl ) == 0 ) {
stop ( ' This table does not contain any observations.' )
}
2018-04-02 16:05:09 +02:00
2018-02-27 20:01:02 +01:00
if ( ! col_ab %in% colnames ( tbl ) ) {
stop ( ' Column ' , col_ab , ' not found.' )
}
2018-04-02 16:05:09 +02:00
2018-02-27 20:01:02 +01:00
if ( ! col_date %in% colnames ( tbl ) ) {
stop ( ' Column ' , col_date , ' not found.' )
}
if ( ' grouped_df' %in% class ( tbl ) ) {
# no grouped tibbles please, mutate will throw errors
tbl <- base :: as.data.frame ( tbl , stringsAsFactors = FALSE )
}
2018-02-21 11:52:31 +01:00
if ( I_as_R == TRUE ) {
tbl [ , col_ab ] <- gsub ( ' I' , ' R' , tbl %>% pull ( col_ab ) )
}
2018-02-27 20:01:02 +01:00
if ( ! all ( tbl %>% pull ( col_ab ) %>% as.rsi ( ) %in% c ( NA , ' S' , ' I' , ' R' ) ) ) {
stop ( ' Column ' , col_ab , ' must contain antimicrobial interpretations (S, I, R).' )
}
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
year <- function ( x ) {
2018-02-27 20:01:02 +01:00
if ( all ( grepl ( ' ^[0-9]{4}$' , x ) ) ) {
x
} else {
as.integer ( format ( as.Date ( x ) , ' %Y' ) )
}
2018-02-21 11:52:31 +01:00
}
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
years_predict <- seq ( from = min ( year ( tbl %>% pull ( col_date ) ) ) , to = year_max , by = year_every )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
df <- tbl %>%
mutate ( year = year ( tbl %>% pull ( col_date ) ) ) %>%
group_by_at ( c ( ' year' , col_ab ) ) %>%
summarise ( n ( ) )
colnames ( df ) <- c ( ' year' , ' antibiotic' , ' count' )
df <- df %>%
reshape2 :: dcast ( year ~ antibiotic , value.var = ' count' )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
if ( model %in% c ( ' binomial' , ' binom' , ' logit' ) ) {
logitmodel <- with ( df , glm ( cbind ( R , S ) ~ year , family = binomial ) )
if ( info == TRUE ) {
cat ( ' \nLogistic regression model (logit) with binomial distribution' )
cat ( ' \n------------------------------------------------------------\n' )
print ( summary ( logitmodel ) )
}
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
predictmodel <- stats :: predict ( logitmodel , newdata = with ( df , list ( year = years_predict ) ) , type = " response" , se.fit = TRUE )
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
} else if ( model == ' loglin' ) {
loglinmodel <- with ( df , glm ( R ~ year , family = poisson ) )
if ( info == TRUE ) {
cat ( ' \nLog-linear regression model (loglin) with poisson distribution' )
cat ( ' \n--------------------------------------------------------------\n' )
print ( summary ( loglinmodel ) )
}
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
predictmodel <- stats :: predict ( loglinmodel , newdata = with ( df , list ( year = years_predict ) ) , type = " response" , se.fit = TRUE )
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
} else if ( model %in% c ( ' lin' , ' linear' ) ) {
linmodel <- with ( df , lm ( ( R / ( R + S ) ) ~ year ) )
if ( info == TRUE ) {
cat ( ' \nLinear regression model' )
cat ( ' \n-----------------------\n' )
print ( summary ( linmodel ) )
}
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
predictmodel <- stats :: predict ( linmodel , newdata = with ( df , list ( year = years_predict ) ) , se.fit = TRUE )
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
} else {
stop ( ' No valid model selected.' )
}
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
# prepare the output dataframe
prediction <- data.frame ( year = years_predict , probR = prediction , stringsAsFactors = FALSE )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
prediction $ se_min <- prediction $ probR - se
prediction $ se_max <- prediction $ probR + se
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
if ( model == ' loglin' ) {
prediction $ probR <- prediction $ probR %>%
format ( scientific = FALSE ) %>%
as.integer ( )
prediction $ se_min <- prediction $ se_min %>% as.integer ( )
prediction $ se_max <- prediction $ se_max %>% as.integer ( )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
colnames ( prediction ) <- c ( ' year' , ' amountR' , ' se_max' , ' se_min' )
} else {
prediction $ se_max [which ( prediction $ se_max > 1 ) ] <- 1
}
prediction $ se_min [which ( prediction $ se_min < 0 ) ] <- 0
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
total <- prediction
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
if ( preserve_measurements == TRUE ) {
# geschatte data vervangen door gemeten data
if ( I_as_R == TRUE ) {
if ( ! ' I' %in% colnames ( df ) ) {
df $ I <- 0
}
df $ probR <- df $ R / rowSums ( df [ , c ( ' R' , ' S' , ' I' ) ] )
} else {
df $ probR <- df $ R / rowSums ( df [ , c ( ' R' , ' S' ) ] )
}
measurements <- data.frame ( year = df $ year ,
probR = df $ probR ,
se_min = NA ,
se_max = NA ,
stringsAsFactors = FALSE )
colnames ( measurements ) <- colnames ( prediction )
prediction <- prediction %>% filter ( ! year %in% df $ year )
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
total <- rbind ( measurements , prediction )
}
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
total
2018-04-02 16:05:09 +02:00
2018-02-21 11:52:31 +01:00
}