AMR/R/bug_drug_combinations.R

196 lines
8.7 KiB
R
Raw Normal View History

2019-08-25 22:53:22 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# SOURCE #
# https://gitlab.com/msberends/AMR #
# #
# LICENCE #
# (c) 2018-2020 Berends MS, Luz CF et al. #
2019-08-25 22:53:22 +02:00
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2019-08-25 22:53:22 +02:00
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
# ==================================================================== #
#' Determine bug-drug combinations
#'
#' Determine antimicrobial resistance (AMR) of all bug-drug combinations in your data set where at least 30 (default) isolates are available per species. Use [format()] on the result to prettify it to a publicable/printable format, see Examples.
#' @inheritSection lifecycle Stable lifecycle
2019-08-25 22:53:22 +02:00
#' @inheritParams eucast_rules
2019-08-27 19:15:04 +02:00
#' @param combine_IR logical to indicate whether values R and I should be summed
2019-08-27 22:41:09 +02:00
#' @param add_ab_group logical to indicate where the group of the antimicrobials must be included as a first column
#' @param remove_intrinsic_resistant logical to indicate that rows with 100% resistance for all tested antimicrobials must be removed from the table
#' @param FUN the function to call on the `mo` column to transform the microorganism IDs, defaults to [mo_shortname()]
#' @param translate_ab a character of length 1 containing column names of the [antibiotics] data set
#' @param ... arguments passed on to `FUN`
2019-08-25 22:53:22 +02:00
#' @inheritParams rsi_df
2019-09-23 13:53:50 +02:00
#' @inheritParams base::formatC
2019-11-11 10:46:39 +01:00
#' @importFrom tidyr pivot_longer
#' @details The function [format()] calculates the resistance per bug-drug combination. Use `combine_IR = FALSE` (default) to test R vs. S+I and `combine_IR = TRUE` to test R+I vs. S.
2019-09-23 13:53:50 +02:00
#'
#' The language of the output can be overwritten with `options(AMR_locale)`, please see [translate].
2019-08-25 22:53:22 +02:00
#' @export
2019-08-27 22:41:09 +02:00
#' @rdname bug_drug_combinations
#' @return The function [bug_drug_combinations()] returns a [`data.frame`] with columns "mo", "ab", "S", "I", "R" and "total".
#' @source \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, *Clinical and Laboratory Standards Institute (CLSI)*. <https://clsi.org/standards/products/microbiology/documents/m39/>.
2019-08-25 22:53:22 +02:00
#' @inheritSection AMR Read more on our website!
#' @examples
#' \donttest{
#' x <- bug_drug_combinations(example_isolates)
2019-08-25 22:53:22 +02:00
#' x
2019-10-11 17:21:02 +02:00
#' format(x, translate_ab = "name (atc)")
2019-09-23 13:53:50 +02:00
#'
#' # Use FUN to change to transformation of microorganism codes
#' x <- bug_drug_combinations(example_isolates,
#' FUN = mo_gramstain)
#'
#' x <- bug_drug_combinations(example_isolates,
#' FUN = function(x) ifelse(x == "B_ESCHR_COLI",
#' "E. coli",
#' "Others"))
2019-08-25 22:53:22 +02:00
#' }
2019-09-23 13:53:50 +02:00
bug_drug_combinations <- function(x,
col_mo = NULL,
FUN = mo_shortname,
...) {
2019-08-25 22:53:22 +02:00
if (!is.data.frame(x)) {
stop("`x` must be a data frame.", call. = FALSE)
}
# try to find columns based on type
# -- mo
if (is.null(col_mo)) {
col_mo <- search_type_in_df(x = x, type = "mo")
}
if (is.null(col_mo)) {
stop("`col_mo` must be set.", call. = FALSE)
}
2020-05-16 13:05:47 +02:00
select_rsi <- function(.data) {
.data[, c(col_mo, names(which(sapply(.data, is.rsi))))]
}
x <- x %>% as.data.frame(stringsAsFactors = FALSE)
x$mo <- FUN(x[, col_mo, drop = TRUE])
x <- x %>%
select_rsi() %>%
2019-11-11 10:46:39 +01:00
pivot_longer(-mo, names_to = "ab") %>%
group_by(mo, ab) %>%
summarise(S = sum(value == "S", na.rm = TRUE),
I = sum(value == "I", na.rm = TRUE),
R = sum(value == "R", na.rm = TRUE)) %>%
ungroup() %>%
2019-08-25 22:53:22 +02:00
mutate(total = S + I + R) %>%
as.data.frame(stringsAsFactors = FALSE)
2019-08-27 22:41:09 +02:00
structure(.Data = x, class = c("bug_drug_combinations", class(x)))
2019-08-25 22:53:22 +02:00
}
2019-11-11 10:46:39 +01:00
#' @importFrom tidyr pivot_wider
2019-08-27 22:41:09 +02:00
#' @exportMethod format.bug_drug_combinations
2019-08-25 22:53:22 +02:00
#' @export
2019-08-27 22:41:09 +02:00
#' @rdname bug_drug_combinations
2019-09-25 15:43:22 +02:00
format.bug_drug_combinations <- function(x,
translate_ab = "name (ab, atc)",
language = get_locale(),
minimum = 30,
combine_SI = TRUE,
combine_IR = FALSE,
2019-09-23 13:53:50 +02:00
add_ab_group = TRUE,
2019-09-25 15:43:22 +02:00
remove_intrinsic_resistant = FALSE,
2019-09-23 13:53:50 +02:00
decimal.mark = getOption("OutDec"),
2019-09-23 14:37:24 +02:00
big.mark = ifelse(decimal.mark == ",", ".", ","),
...) {
2020-05-16 13:05:47 +02:00
x <- x %>% subset(total >= minimum)
2019-09-25 15:43:22 +02:00
if (remove_intrinsic_resistant == TRUE) {
2020-05-16 13:05:47 +02:00
x <- x %>% subset(R != total)
2019-09-25 15:43:22 +02:00
}
2019-10-11 17:21:02 +02:00
if (combine_SI == TRUE | combine_IR == FALSE) {
2019-08-25 22:53:22 +02:00
x$isolates <- x$R
} else {
x$isolates <- x$R + x$I
}
2019-09-25 15:43:22 +02:00
give_ab_name <- function(ab, format, language) {
format <- tolower(format)
ab_txt <- rep(format, length(ab))
2019-10-11 17:21:02 +02:00
for (i in seq_len(length(ab_txt))) {
2019-09-25 15:43:22 +02:00
ab_txt[i] <- gsub("ab", ab[i], ab_txt[i])
ab_txt[i] <- gsub("cid", ab_cid(ab[i]), ab_txt[i])
ab_txt[i] <- gsub("group", ab_group(ab[i], language = language), ab_txt[i])
ab_txt[i] <- gsub("atc_group1", ab_atc_group1(ab[i], language = language), ab_txt[i])
ab_txt[i] <- gsub("atc_group2", ab_atc_group2(ab[i], language = language), ab_txt[i])
ab_txt[i] <- gsub("atc", ab_atc(ab[i]), ab_txt[i])
ab_txt[i] <- gsub("name", ab_name(ab[i], language = language), ab_txt[i])
ab_txt[i]
}
ab_txt
}
2019-11-11 10:46:39 +01:00
2020-05-16 13:05:47 +02:00
remove_NAs <- function(.data) {
as.data.frame(sapply(.data, function(x) ifelse(is.na(x), "", x), simplify = FALSE))
}
create_var <- function(.data, ...) {
dots <- list(...)
for (i in seq_len(length(dots))) {
.data[, names(dots)[i]] <- dots[[i]]
}
.data
}
2019-08-25 22:53:22 +02:00
y <- x %>%
2020-05-16 13:05:47 +02:00
create_var(ab = as.ab(x$ab),
ab_txt = give_ab_name(ab = x$ab, format = translate_ab, language = language)) %>%
2019-09-25 15:43:22 +02:00
group_by(ab, ab_txt, mo) %>%
summarise(isolates = sum(isolates, na.rm = TRUE),
total = sum(total, na.rm = TRUE)) %>%
2020-05-16 13:05:47 +02:00
ungroup()
y <- y %>%
create_var(txt = paste0(percentage(y$isolates / y$total, decimal.mark = decimal.mark, big.mark = big.mark),
" (", trimws(format(y$isolates, big.mark = big.mark)), "/",
trimws(format(y$total, big.mark = big.mark)), ")")) %>%
2019-11-11 10:46:39 +01:00
select(ab, ab_txt, mo, txt) %>%
arrange(mo) %>%
pivot_wider(names_from = mo, values_from = txt) %>%
2020-05-16 13:05:47 +02:00
remove_NAs()
2019-08-25 22:53:22 +02:00
2020-05-16 13:05:47 +02:00
select_ab_vars <- function(.data) {
.data[, c("ab_group", "ab_txt", colnames(.data)[!colnames(.data) %in% c("ab_group", "ab_txt", "ab")])]
}
y <- y %>%
create_var(ab_group = ab_group(y$ab, language = language)) %>%
select_ab_vars() %>%
arrange(ab_group, ab_txt)
y <- y %>%
create_var(ab_group = ifelse(y$ab_group != lag(y$ab_group) | is.na(lag(y$ab_group)), y$ab_group, ""))
2019-08-25 22:53:22 +02:00
if (add_ab_group == FALSE) {
2019-09-25 15:43:22 +02:00
y <- y %>% select(-ab_group) %>% rename("Drug" = ab_txt)
2019-09-23 13:53:50 +02:00
colnames(y)[1] <- translate_AMR(colnames(y)[1], language = get_locale(), only_unknown = FALSE)
} else {
y <- y %>% rename("Group" = ab_group,
2019-09-25 15:43:22 +02:00
"Drug" = ab_txt)
2019-09-23 13:53:50 +02:00
colnames(y)[1:2] <- translate_AMR(colnames(y)[1:2], language = get_locale(), only_unknown = FALSE)
2019-08-25 22:53:22 +02:00
}
y
}
2019-08-27 22:41:09 +02:00
#' @exportMethod print.bug_drug_combinations
2019-08-25 22:53:22 +02:00
#' @export
2019-08-27 22:41:09 +02:00
print.bug_drug_combinations <- function(x, ...) {
2019-08-25 22:53:22 +02:00
print(as.data.frame(x, stringsAsFactors = FALSE))
2020-05-16 13:05:47 +02:00
message(font_blue("NOTE: Use 'format()' on this result to get a publicable/printable format."))
2019-08-25 22:53:22 +02:00
}