2018-02-21 11:52:31 +01:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# AUTHORS #
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# LICENCE #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License version 2.0, #
# as published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# ==================================================================== #
#' Determine first (weighted) isolates
#'
2018-04-02 11:11:21 +02:00
#' Determine first (weighted) isolates of all microorganisms of every patient per episode and (if needed) per specimen type.
2018-02-21 11:52:31 +01:00
#' @param tbl a \code{data.frame} containing isolates.
2018-04-02 11:11:21 +02:00
#' @param col_date column name of the result date (or date that is was received on the lab)
#' @param col_patient_id column name of the unique IDs of the patients
2018-07-23 14:14:03 +02:00
#' @param col_bactid column name of the unique IDs of the microorganisms: \code{bactid}'s. If this column has another class than \code{"bactid"}, values will be coerced using \code{\link{as.bactid}}.
2018-03-19 20:39:23 +01:00
#' @param col_testcode column name of the test codes. Use \code{col_testcode = NA} to \strong{not} exclude certain test codes (like test codes for screening). In that case \code{testcodes_exclude} will be ignored. Supports tidyverse-like quotation.
2018-04-02 11:11:21 +02:00
#' @param col_specimen column name of the specimen type or group
#' @param col_icu column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU)
2018-03-19 20:39:23 +01:00
#' @param col_keyantibiotics column name of the key antibiotics to determine first \emph{weighted} isolates, see \code{\link{key_antibiotics}}. Supports tidyverse-like quotation.
2018-02-21 11:52:31 +01:00
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again
2018-03-19 20:39:23 +01:00
#' @param testcodes_exclude character vector with test codes that should be excluded (case-insensitive)
2018-02-21 11:52:31 +01:00
#' @param icu_exclude logical whether ICU isolates should be excluded
#' @param filter_specimen specimen group or type that should be excluded
2018-03-19 20:39:23 +01:00
#' @param output_logical return output as \code{logical} (will else be the values \code{0} or \code{1})
#' @param type type to determine weighed isolates; can be \code{"keyantibiotics"} or \code{"points"}, see Details
#' @param ignore_I logical to determine whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see Details
#' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see Details
2018-02-21 11:52:31 +01:00
#' @param info print progress
2018-04-02 11:11:21 +02:00
#' @param col_genus (deprecated, use \code{col_bactid} instead) column name of the genus of the microorganisms
#' @param col_species (deprecated, use \code{col_bactid} instead) column name of the species of the microorganisms
2018-03-19 20:39:23 +01:00
#' @details \strong{WHY THIS IS SO IMPORTANT} \cr
2018-02-27 20:01:02 +01:00
#' To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode \href{https://www.ncbi.nlm.nih.gov/pubmed/17304462}{[1]}. If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all \emph{S. aureus} isolates would be overestimated, because you included this MRSA more than once. It would be \href{https://en.wikipedia.org/wiki/Selection_bias}{selection bias}.
2018-07-17 13:02:05 +02:00
#' @section Key antibiotics:
2018-07-25 14:17:04 +02:00
#' There are two ways to determine whether isolates can be included as first \emph{weighted} isolates which will give generally the same results: \cr
2018-03-13 11:57:30 +01:00
#'
2018-03-19 21:23:21 +01:00
#' \strong{1. Using} \code{type = "keyantibiotics"} \strong{and parameter} \code{ignore_I} \cr
2018-07-17 13:02:05 +02:00
#' Any difference from S to R (or vice versa) will (re)select an isolate as a first weighted isolate. With \code{ignore_I = FALSE}, also differences from I to S|R (or vice versa) will lead to this. This is a reliable method and 30-35 times faster than method 2. \cr
#'
2018-03-19 21:23:21 +01:00
#' \strong{2. Using} \code{type = "points"} \strong{and parameter} \code{points_threshold} \cr
2018-07-17 13:02:05 +02:00
#' A difference from I to S|R (or vice versa) means 0.5 points, a difference from S to R (or vice versa) means 1 point. When the sum of points exceeds \code{points_threshold}, an isolate will be (re)selected as a first weighted isolate.
2018-02-21 11:52:31 +01:00
#' @keywords isolate isolates first
2018-07-17 14:48:11 +02:00
#' @seealso \code{\link{key_antibiotics}}
2018-02-26 12:15:52 +01:00
#' @export
2018-02-21 11:52:31 +01:00
#' @importFrom dplyr arrange_at lag between row_number filter mutate arrange
#' @return A vector to add to table, see Examples.
2018-04-20 13:45:34 +02:00
#' @source Methodology of this function is based on: "M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition", 2014, Clinical and Laboratory Standards Institute. \url{https://clsi.org/standards/products/microbiology/documents/m39/}.
2018-02-21 11:52:31 +01:00
#' @examples
2018-03-19 20:39:23 +01:00
#' # septic_patients is a dataset available in the AMR package
#' ?septic_patients
#' my_patients <- septic_patients
2018-04-02 11:11:21 +02:00
#'
2018-03-19 20:39:23 +01:00
#' library(dplyr)
#' my_patients$first_isolate <- my_patients %>%
2018-04-02 11:11:21 +02:00
#' first_isolate(col_date = "date",
#' col_patient_id = "patient_id",
#' col_bactid = "bactid")
#'
2018-07-25 14:17:04 +02:00
#' # Now let's see if first isolates matter:
#' A <- my_patients %>%
#' group_by(hospital_id) %>%
#' summarise(count = n_rsi(gent), # gentamicin
#' resistance = resistance(gent))
#'
#' B <- my_patients %>%
2018-07-26 16:30:42 +02:00
#' filter(first_isolate == TRUE) %>% # the 1st isolate filter
2018-07-25 14:17:04 +02:00
#' group_by(hospital_id) %>%
2018-07-26 16:30:42 +02:00
#' summarise(count = n_rsi(gent),
2018-07-25 14:17:04 +02:00
#' resistance = resistance(gent))
#'
#' # Have a look at A and B. B is more reliable because every isolate is
2018-07-26 16:30:42 +02:00
#' # counted once. Gentamicin resitance in hospital D appears to be 5%
2018-07-25 14:17:04 +02:00
#' # higher than originally thought.
#'
#' ## OTHER EXAMPLES:
#'
2018-02-21 11:52:31 +01:00
#' \dontrun{
#'
2018-02-22 20:48:48 +01:00
#' # set key antibiotics to a new variable
2018-02-21 11:52:31 +01:00
#' tbl$keyab <- key_antibiotics(tbl)
#'
#' tbl$first_isolate <-
#' first_isolate(tbl)
#'
#' tbl$first_isolate_weighed <-
#' first_isolate(tbl,
#' col_keyantibiotics = 'keyab')
#'
#' tbl$first_blood_isolate <-
#' first_isolate(tbl,
#' filter_specimen = 'Blood')
#'
#' tbl$first_blood_isolate_weighed <-
#' first_isolate(tbl,
#' filter_specimen = 'Blood',
#' col_keyantibiotics = 'keyab')
#'
#' tbl$first_urine_isolate <-
#' first_isolate(tbl,
#' filter_specimen = 'Urine')
#'
#' tbl$first_urine_isolate_weighed <-
#' first_isolate(tbl,
#' filter_specimen = 'Urine',
#' col_keyantibiotics = 'keyab')
#'
#' tbl$first_resp_isolate <-
#' first_isolate(tbl,
#' filter_specimen = 'Respiratory')
#'
#' tbl$first_resp_isolate_weighed <-
#' first_isolate(tbl,
#' filter_specimen = 'Respiratory',
#' col_keyantibiotics = 'keyab')
#' }
first_isolate <- function ( tbl ,
col_date ,
2018-02-26 14:06:31 +01:00
col_patient_id ,
2018-03-23 14:46:02 +01:00
col_bactid = NA ,
2018-02-21 11:52:31 +01:00
col_testcode = NA ,
2018-03-19 20:39:23 +01:00
col_specimen = NA ,
col_icu = NA ,
2018-02-21 11:52:31 +01:00
col_keyantibiotics = NA ,
episode_days = 365 ,
testcodes_exclude = ' ' ,
icu_exclude = FALSE ,
filter_specimen = NA ,
output_logical = TRUE ,
2018-03-19 20:39:23 +01:00
type = " keyantibiotics" ,
ignore_I = TRUE ,
2018-02-27 20:01:02 +01:00
points_threshold = 2 ,
2018-03-23 14:46:02 +01:00
info = TRUE ,
col_genus = NA ,
col_species = NA ) {
2018-04-02 11:11:21 +02:00
# bactid OR genus+species must be available
if ( is.na ( col_bactid ) & ( is.na ( col_genus ) | is.na ( col_species ) ) ) {
2018-07-23 14:14:03 +02:00
stop ( ' `col_bactid` or both `col_genus` and `col_species` must be available.' )
2018-04-02 11:11:21 +02:00
}
2018-03-19 20:39:23 +01:00
# check if columns exist
2018-02-21 11:52:31 +01:00
check_columns_existance <- function ( column , tblname = tbl ) {
if ( NROW ( tblname ) <= 1 | NCOL ( tblname ) <= 1 ) {
stop ( ' Please check tbl for existance.' )
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( ! is.na ( column ) ) {
if ( ! ( column %in% colnames ( tblname ) ) ) {
2018-04-02 11:11:21 +02:00
stop ( ' Column `' , column , ' ` not found.' )
2018-02-21 11:52:31 +01:00
}
}
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
check_columns_existance ( col_date )
2018-02-26 14:06:31 +01:00
check_columns_existance ( col_patient_id )
2018-03-23 14:46:02 +01:00
check_columns_existance ( col_bactid )
2018-02-21 11:52:31 +01:00
check_columns_existance ( col_genus )
check_columns_existance ( col_species )
check_columns_existance ( col_testcode )
check_columns_existance ( col_icu )
check_columns_existance ( col_keyantibiotics )
2018-04-02 11:11:21 +02:00
2018-03-23 14:46:02 +01:00
if ( ! is.na ( col_bactid ) ) {
2018-07-23 14:14:03 +02:00
if ( ! tbl %>% pull ( col_bactid ) %>% is.bactid ( ) ) {
2018-07-26 16:30:42 +02:00
# warning("Improve integrity of the `", col_bactid, "` column by transforming it with 'as.bactid'.")
2018-07-23 14:14:03 +02:00
}
2018-07-26 16:30:42 +02:00
# join to microorganisms data set
2018-04-02 11:11:21 +02:00
tbl <- tbl %>% left_join_microorganisms ( by = col_bactid )
2018-03-23 14:46:02 +01:00
col_genus <- " genus"
col_species <- " species"
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( is.na ( col_testcode ) ) {
testcodes_exclude <- NA
}
2018-03-19 20:39:23 +01:00
# remove testcodes
2018-02-21 11:52:31 +01:00
if ( ! is.na ( testcodes_exclude [1 ] ) & testcodes_exclude [1 ] != ' ' & info == TRUE ) {
2018-07-19 15:11:23 +02:00
cat ( ' [Criteria] Excluded test codes:\n' , toString ( testcodes_exclude ) , ' \n' )
2018-02-21 11:52:31 +01:00
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( is.na ( col_icu ) ) {
icu_exclude <- FALSE
} else {
tbl <- tbl %>%
mutate ( col_icu = tbl %>% pull ( col_icu ) %>% as.logical ( ) )
}
2018-04-02 11:11:21 +02:00
2018-03-19 20:39:23 +01:00
if ( is.na ( col_specimen ) ) {
filter_specimen <- ' '
}
2018-04-02 11:11:21 +02:00
2018-03-19 20:39:23 +01:00
# filter on specimen group and keyantibiotics when they are filled in
2018-02-21 11:52:31 +01:00
if ( ! is.na ( filter_specimen ) & filter_specimen != ' ' ) {
check_columns_existance ( col_specimen , tbl )
if ( info == TRUE ) {
2018-07-19 15:11:23 +02:00
cat ( ' [Criteria] Excluded other than specimen group \'' , filter_specimen , ' \'\n' , sep = ' ' )
2018-02-21 11:52:31 +01:00
}
} else {
filter_specimen <- ' '
}
if ( col_keyantibiotics %in% c ( NA , ' ' ) ) {
col_keyantibiotics <- ' '
} else {
tbl <- tbl %>% mutate ( key_ab = tbl %>% pull ( col_keyantibiotics ) )
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( is.na ( testcodes_exclude [1 ] ) ) {
testcodes_exclude <- ' '
}
2018-04-02 11:11:21 +02:00
2018-03-19 20:39:23 +01:00
# create new dataframe with original row index and right sorting
2018-02-21 11:52:31 +01:00
tbl <- tbl %>%
mutate ( first_isolate_row_index = 1 : nrow ( tbl ) ,
date_lab = tbl %>% pull ( col_date ) ,
2018-02-26 14:06:31 +01:00
patient_id = tbl %>% pull ( col_patient_id ) ,
species = tbl %>% pull ( col_species ) ,
genus = tbl %>% pull ( col_genus ) ) %>%
2018-06-19 10:05:38 +02:00
mutate ( species = if_else ( is.na ( species ) | species == " (no MO)" , " " , species ) ,
genus = if_else ( is.na ( genus ) | genus == " (no MO)" , " " , genus ) )
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( filter_specimen == ' ' ) {
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( icu_exclude == FALSE ) {
2018-07-19 15:11:23 +02:00
if ( info == TRUE & ! is.na ( col_icu ) ) {
cat ( ' [Criteria] Included isolates from ICU.\n' )
2018-02-21 11:52:31 +01:00
}
tbl <- tbl %>%
2018-02-26 14:06:31 +01:00
arrange_at ( c ( col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_date ) )
row.start <- 1
row.end <- nrow ( tbl )
} else {
if ( info == TRUE ) {
2018-07-19 15:11:23 +02:00
cat ( ' [Criteria] Excluded isolates from ICU.\n' )
2018-02-21 11:52:31 +01:00
}
tbl <- tbl %>%
arrange_at ( c ( col_icu ,
2018-02-26 14:06:31 +01:00
col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_date ) )
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
suppressWarnings (
row.start <- which ( tbl %>% pull ( col_icu ) == FALSE ) %>% min ( na.rm = TRUE )
)
suppressWarnings (
row.end <- which ( tbl %>% pull ( col_icu ) == FALSE ) %>% max ( na.rm = TRUE )
)
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
} else {
2018-03-19 20:39:23 +01:00
# sort on specimen and only analyse these row to save time
2018-02-21 11:52:31 +01:00
if ( icu_exclude == FALSE ) {
2018-07-19 15:11:23 +02:00
if ( info == TRUE & ! is.na ( col_icu ) ) {
cat ( ' [Criteria] Included isolates from ICU.\n' )
2018-02-21 11:52:31 +01:00
}
tbl <- tbl %>%
arrange_at ( c ( col_specimen ,
2018-02-26 14:06:31 +01:00
col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_date ) )
suppressWarnings (
row.start <- which ( tbl %>% pull ( col_specimen ) == filter_specimen ) %>% min ( na.rm = TRUE )
)
suppressWarnings (
row.end <- which ( tbl %>% pull ( col_specimen ) == filter_specimen ) %>% max ( na.rm = TRUE )
)
} else {
if ( info == TRUE ) {
2018-07-19 15:11:23 +02:00
cat ( ' [Criteria] Excluded isolates from ICU.\n' )
2018-02-21 11:52:31 +01:00
}
tbl <- tbl %>%
arrange_at ( c ( col_icu ,
col_specimen ,
2018-02-26 14:06:31 +01:00
col_patient_id ,
2018-02-21 11:52:31 +01:00
col_genus ,
col_species ,
col_date ) )
suppressWarnings (
row.start <- which ( tbl %>% pull ( col_specimen ) == filter_specimen
& tbl %>% pull ( col_icu ) == FALSE ) %>% min ( na.rm = TRUE )
)
suppressWarnings (
row.end <- which ( tbl %>% pull ( col_specimen ) == filter_specimen
& tbl %>% pull ( col_icu ) == FALSE ) %>% max ( na.rm = TRUE )
)
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( abs ( row.start ) == Inf | abs ( row.end ) == Inf ) {
if ( info == TRUE ) {
2018-07-19 15:11:23 +02:00
message ( ' No isolates found.' )
2018-02-21 11:52:31 +01:00
}
2018-03-19 20:39:23 +01:00
# NA's where genus is unavailable
2018-02-21 11:52:31 +01:00
tbl <- tbl %>%
mutate ( real_first_isolate = if_else ( genus == ' ' , NA , FALSE ) )
if ( output_logical == FALSE ) {
tbl $ real_first_isolate <- tbl %>% pull ( real_first_isolate ) %>% as.integer ( )
}
return ( tbl %>% pull ( real_first_isolate ) )
}
2018-04-02 11:11:21 +02:00
2018-06-08 12:06:54 +02:00
# suppress warnings because dplyr want us to use library(dplyr) when using filter(row_number())
suppressWarnings (
scope.size <- tbl %>%
filter (
2018-05-31 14:19:25 +02:00
row_number ( ) %>% between ( row.start ,
2018-06-08 12:06:54 +02:00
row.end ) ,
genus != ' ' ) %>%
nrow ( )
)
2018-05-31 14:19:25 +02:00
2018-03-19 20:39:23 +01:00
# Analysis of first isolate ----
2018-02-21 11:52:31 +01:00
all_first <- tbl %>%
mutate ( other_pat_or_mo = if_else ( patient_id == lag ( patient_id )
& genus == lag ( genus )
& species == lag ( species ) ,
FALSE ,
TRUE ) ,
days_diff = 0 ) %>%
mutate ( days_diff = if_else ( other_pat_or_mo == FALSE ,
( date_lab - lag ( date_lab ) ) + lag ( days_diff ) ,
0 ) )
2018-04-02 11:11:21 +02:00
2018-07-25 14:17:04 +02:00
weighted.notice <- ' '
2018-02-21 11:52:31 +01:00
if ( col_keyantibiotics != ' ' ) {
2018-07-25 14:17:04 +02:00
weighted.notice <- ' weighted '
2018-02-21 11:52:31 +01:00
if ( info == TRUE ) {
2018-03-19 20:39:23 +01:00
if ( type == ' keyantibiotics' ) {
2018-07-19 15:11:23 +02:00
cat ( ' [Criteria] Inclusion based on key antibiotics, ' )
2018-03-19 20:39:23 +01:00
if ( ignore_I == FALSE ) {
2018-07-19 15:11:23 +02:00
cat ( ' not ' )
2018-03-19 20:39:23 +01:00
}
2018-07-19 15:11:23 +02:00
cat ( ' ignoring I.\n' )
2018-03-19 20:39:23 +01:00
}
if ( type == ' points' ) {
2018-07-19 15:11:23 +02:00
cat ( paste0 ( ' [Criteria] Inclusion based on key antibiotics, using points threshold of '
, points_threshold , ' .\n' ) )
2018-03-19 20:39:23 +01:00
}
2018-02-21 11:52:31 +01:00
}
2018-03-19 21:03:23 +01:00
type_param <- type
2018-06-08 12:06:54 +02:00
# suppress warnings because dplyr want us to use library(dplyr) when using filter(row_number())
suppressWarnings (
all_first <- all_first %>%
mutate ( key_ab_lag = lag ( key_ab ) ) %>%
mutate ( key_ab_other = ! key_antibiotics_equal ( x = key_ab ,
y = key_ab_lag ,
type = type_param ,
ignore_I = ignore_I ,
points_threshold = points_threshold ,
info = info ) ) %>%
mutate (
real_first_isolate =
if_else (
between ( row_number ( ) , row.start , row.end )
& genus != ' '
& ( other_pat_or_mo
| days_diff >= episode_days
| key_ab_other ) ,
TRUE ,
FALSE ) )
)
2018-02-21 11:52:31 +01:00
} else {
2018-06-08 12:06:54 +02:00
# suppress warnings because dplyr want us to use library(dplyr) when using filter(row_number())
suppressWarnings (
all_first <- all_first %>%
mutate (
real_first_isolate =
if_else (
between ( row_number ( ) , row.start , row.end )
& genus != ' '
& ( other_pat_or_mo
| days_diff >= episode_days ) ,
TRUE ,
FALSE ) )
)
2018-02-21 11:52:31 +01:00
}
2018-04-02 11:11:21 +02:00
2018-03-19 20:39:23 +01:00
# first one as TRUE
2018-02-21 11:52:31 +01:00
all_first [row.start , ' real_first_isolate' ] <- TRUE
2018-03-19 20:39:23 +01:00
# no tests that should be included, or ICU
2018-02-21 11:52:31 +01:00
if ( ! is.na ( col_testcode ) ) {
all_first [which ( all_first [ , col_testcode ] %in% tolower ( testcodes_exclude ) ) , ' real_first_isolate' ] <- FALSE
}
if ( icu_exclude == TRUE ) {
all_first [which ( all_first [ , col_icu ] == TRUE ) , ' real_first_isolate' ] <- FALSE
}
2018-04-02 11:11:21 +02:00
2018-03-19 20:39:23 +01:00
# NA's where genus is unavailable
2018-02-21 11:52:31 +01:00
all_first <- all_first %>%
2018-06-19 10:05:38 +02:00
mutate ( real_first_isolate = if_else ( genus %in% c ( ' ' , ' (no MO)' , NA ) , NA , real_first_isolate ) )
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
all_first <- all_first %>%
arrange ( first_isolate_row_index ) %>%
pull ( real_first_isolate )
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( info == TRUE ) {
2018-07-19 15:11:23 +02:00
message ( paste0 ( ' Found ' ,
2018-02-21 11:52:31 +01:00
all_first %>% sum ( na.rm = TRUE ) ,
' first ' , weighted.notice , ' isolates (' ,
( all_first %>% sum ( na.rm = TRUE ) / scope.size ) %>% percent ( ) ,
' of isolates in scope [where genus was not empty] and ' ,
( all_first %>% sum ( na.rm = TRUE ) / tbl %>% nrow ( ) ) %>% percent ( ) ,
2018-07-19 15:11:23 +02:00
' of total)' ) )
2018-02-21 11:52:31 +01:00
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
if ( output_logical == FALSE ) {
all_first <- all_first %>% as.integer ( )
}
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
all_first
2018-04-02 11:11:21 +02:00
2018-02-21 11:52:31 +01:00
}