mirror of
https://github.com/msberends/AMR.git
synced 2025-07-09 00:43:00 +02:00
(v0.7.1.9102) lintr
This commit is contained in:
@ -120,7 +120,7 @@ resistance_predict <- function(x,
|
||||
...) {
|
||||
|
||||
if (nrow(x) == 0) {
|
||||
stop('This table does not contain any observations.')
|
||||
stop("This table does not contain any observations.")
|
||||
}
|
||||
|
||||
if (is.null(model)) {
|
||||
@ -128,17 +128,17 @@ resistance_predict <- function(x,
|
||||
}
|
||||
|
||||
if (!col_ab %in% colnames(x)) {
|
||||
stop('Column ', col_ab, ' not found.')
|
||||
stop("Column ", col_ab, " not found.")
|
||||
}
|
||||
|
||||
dots <- unlist(list(...))
|
||||
if (length(dots) != 0) {
|
||||
# backwards compatibility with old parameters
|
||||
dots.names <- dots %>% names()
|
||||
if ('tbl' %in% dots.names) {
|
||||
x <- dots[which(dots.names == 'tbl')]
|
||||
if ("tbl" %in% dots.names) {
|
||||
x <- dots[which(dots.names == "tbl")]
|
||||
}
|
||||
if ('I_as_R' %in% dots.names) {
|
||||
if ("I_as_R" %in% dots.names) {
|
||||
warning("`I_as_R is deprecated - use I_as_S instead.", call. = FALSE)
|
||||
}
|
||||
}
|
||||
@ -152,7 +152,7 @@ resistance_predict <- function(x,
|
||||
}
|
||||
|
||||
if (!col_date %in% colnames(x)) {
|
||||
stop('Column ', col_date, ' not found.')
|
||||
stop("Column ", col_date, " not found.")
|
||||
}
|
||||
|
||||
if (n_groups(x) > 1) {
|
||||
@ -161,10 +161,10 @@ resistance_predict <- function(x,
|
||||
}
|
||||
|
||||
year <- function(x) {
|
||||
if (all(grepl('^[0-9]{4}$', x))) {
|
||||
if (all(grepl("^[0-9]{4}$", x))) {
|
||||
x
|
||||
} else {
|
||||
as.integer(format(as.Date(x), '%Y'))
|
||||
as.integer(format(as.Date(x), "%Y"))
|
||||
}
|
||||
}
|
||||
|
||||
@ -181,8 +181,8 @@ resistance_predict <- function(x,
|
||||
}
|
||||
df <- df %>%
|
||||
filter_at(col_ab, all_vars(!is.na(.))) %>%
|
||||
mutate(year = pull(., col_date) %>% year()) %>%
|
||||
group_by_at(c('year', col_ab)) %>%
|
||||
mutate(year = year(pull(., col_date))) %>%
|
||||
group_by_at(c("year", col_ab)) %>%
|
||||
summarise(n())
|
||||
|
||||
if (df %>% pull(col_ab) %>% n_distinct(na.rm = TRUE) < 2) {
|
||||
@ -191,7 +191,7 @@ resistance_predict <- function(x,
|
||||
call. = FALSE)
|
||||
}
|
||||
|
||||
colnames(df) <- c('year', 'antibiotic', 'observations')
|
||||
colnames(df) <- c("year", "antibiotic", "observations")
|
||||
df <- df %>%
|
||||
filter(!is.na(antibiotic)) %>%
|
||||
tidyr::spread(antibiotic, observations, fill = 0) %>%
|
||||
@ -202,7 +202,7 @@ resistance_predict <- function(x,
|
||||
as.matrix()
|
||||
|
||||
if (NROW(df) == 0) {
|
||||
stop('There are no observations.')
|
||||
stop("There are no observations.")
|
||||
}
|
||||
|
||||
year_lowest <- min(df$year)
|
||||
@ -217,12 +217,12 @@ resistance_predict <- function(x,
|
||||
|
||||
years <- list(year = seq(from = year_min, to = year_max, by = year_every))
|
||||
|
||||
if (model %in% c('binomial', 'binom', 'logit')) {
|
||||
if (model %in% c("binomial", "binom", "logit")) {
|
||||
model <- "binomial"
|
||||
model_lm <- with(df, glm(df_matrix ~ year, family = binomial))
|
||||
if (info == TRUE) {
|
||||
cat('\nLogistic regression model (logit) with binomial distribution')
|
||||
cat('\n------------------------------------------------------------\n')
|
||||
cat("\nLogistic regression model (logit) with binomial distribution")
|
||||
cat("\n------------------------------------------------------------\n")
|
||||
print(summary(model_lm))
|
||||
}
|
||||
|
||||
@ -230,12 +230,12 @@ resistance_predict <- function(x,
|
||||
prediction <- predictmodel$fit
|
||||
se <- predictmodel$se.fit
|
||||
|
||||
} else if (model %in% c('loglin', 'poisson')) {
|
||||
} else if (model %in% c("loglin", "poisson")) {
|
||||
model <- "poisson"
|
||||
model_lm <- with(df, glm(R ~ year, family = poisson))
|
||||
if (info == TRUE) {
|
||||
cat('\nLog-linear regression model (loglin) with poisson distribution')
|
||||
cat('\n--------------------------------------------------------------\n')
|
||||
cat("\nLog-linear regression model (loglin) with poisson distribution")
|
||||
cat("\n--------------------------------------------------------------\n")
|
||||
print(summary(model_lm))
|
||||
}
|
||||
|
||||
@ -243,12 +243,12 @@ resistance_predict <- function(x,
|
||||
prediction <- predictmodel$fit
|
||||
se <- predictmodel$se.fit
|
||||
|
||||
} else if (model %in% c('lin', 'linear')) {
|
||||
} else if (model %in% c("lin", "linear")) {
|
||||
model <- "linear"
|
||||
model_lm <- with(df, lm((R / (R + S)) ~ year))
|
||||
if (info == TRUE) {
|
||||
cat('\nLinear regression model')
|
||||
cat('\n-----------------------\n')
|
||||
cat("\nLinear regression model")
|
||||
cat("\n-----------------------\n")
|
||||
print(summary(model_lm))
|
||||
}
|
||||
|
||||
@ -257,7 +257,7 @@ resistance_predict <- function(x,
|
||||
se <- predictmodel$se.fit
|
||||
|
||||
} else {
|
||||
stop('No valid model selected. See ?resistance_predict.')
|
||||
stop("No valid model selected. See ?resistance_predict.")
|
||||
}
|
||||
|
||||
# prepare the output dataframe
|
||||
@ -268,7 +268,7 @@ resistance_predict <- function(x,
|
||||
mutate(se_min = value - se,
|
||||
se_max = value + se)
|
||||
|
||||
if (model == 'poisson') {
|
||||
if (model == "poisson") {
|
||||
df_prediction <- df_prediction %>%
|
||||
mutate(value = value %>%
|
||||
format(scientific = FALSE) %>%
|
||||
|
Reference in New Issue
Block a user