In this example, we demonstrated how to build a machine learning
pipeline with the tidymodels framework and the
AMR package. By combining selector functions like
aminoglycosides() and betalactams() with
@@ -521,10 +521,9 @@ predictors can easily and agnostically selected using the new
# Define the recipe
mic_recipe <- recipe ( esbl ~ . , data = training_data ) %>%
remove_role ( genus , old_role = "predictor" ) %>% # Remove non-informative variable
- step_mic_log2 ( all_mic_predictors ( ) ) #%>% # Log2 transform all MIC predictors
- # prep()
+ step_mic_log2 ( all_mic_predictors ( ) ) # Log2 transform all MIC predictors
-mic_recipe
+prep ( mic_recipe )
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
@@ -534,8 +533,11 @@ predictors can easily and agnostically selected using the new
#> predictor: 17
#> undeclared role: 1
#>
+#> ── Training information
+#> Training data contained 375 data points and no incomplete rows.
+#>
#> ── Operations
-#> • Log2 transformation of MIC columns: all_mic_predictors()
+#> • Log2 transformation of MIC columns: AMC , AMP , TZP , CXM , FOX , ... | Trained
It appears we can predict ESBL gene presence with a positive
predictive value (PPV) of 92.1% and a negative predictive value (NPV) of
-91.9 using a simplistic logistic regression model.
+91.9% using a simplistic logistic regression model.
-
-Conclusion
+
+Conclusion
In this example, we demonstrated how to analyze AMR trends over time
using tidymodels. By aggregating resistance rates by year
diff --git a/articles/AMR_with_tidymodels.md b/articles/AMR_with_tidymodels.md
index 747801c2f..bf99ea546 100644
--- a/articles/AMR_with_tidymodels.md
+++ b/articles/AMR_with_tidymodels.md
@@ -332,9 +332,9 @@ predictions %>%
### **Conclusion**
-In this post, we demonstrated how to build a machine learning pipeline
-with the `tidymodels` framework and the `AMR` package. By combining
-selector functions like
+In this example, we demonstrated how to build a machine learning
+pipeline with the `tidymodels` framework and the `AMR` package. By
+combining selector functions like
[`aminoglycosides()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
and
[`betalactams()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
@@ -431,10 +431,9 @@ testing_data <- testing(split)
# Define the recipe
mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
remove_role(genus, old_role = "predictor") %>% # Remove non-informative variable
- step_mic_log2(all_mic_predictors()) #%>% # Log2 transform all MIC predictors
- # prep()
+ step_mic_log2(all_mic_predictors()) # Log2 transform all MIC predictors
-mic_recipe
+prep(mic_recipe)
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
@@ -444,8 +443,11 @@ mic_recipe
#> predictor: 17
#> undeclared role: 1
#>
+#> ── Training information
+#> Training data contained 375 data points and no incomplete rows.
+#>
#> ── Operations
-#> • Log2 transformation of MIC columns: all_mic_predictors()
+#> • Log2 transformation of MIC columns: AMC, AMP, TZP, CXM, FOX, ... | Trained
```
**Explanation:**
@@ -540,8 +542,8 @@ metrics
check the predictions with.
It appears we can predict ESBL gene presence with a positive predictive
-value (PPV) of 92.1% and a negative predictive value (NPV) of 91.9 using
-a simplistic logistic regression model.
+value (PPV) of 92.1% and a negative predictive value (NPV) of 91.9%
+using a simplistic logistic regression model.
### **Visualising Predictions**
@@ -574,20 +576,22 @@ predictions %>%
colour = correct)) +
scale_colour_manual(values = c(Right = "green3", Wrong = "red2"),
name = "Correct?") +
- geom_point() +
+ geom_point() +
scale_y_continuous(labels = function(x) paste0(x * 100, "%"),
limits = c(0.5, 1)) +
theme_minimal()
```
- \###
-**Conclusion**
+
+
+### **Conclusion**
In this example, we showcased how the new `AMR`-specific recipe steps
simplify working with `` columns in `tidymodels`. The
[`step_mic_log2()`](https://amr-for-r.org/reference/amr-tidymodels.md)
-transformation converts ordered MICs to log2-transformed numerics,
-improving compatibility with classification models.
+transformation converts MICs (with or without operators) to
+log2-transformed numerics, improving compatibility with classification
+models.
This pipeline enables realistic, reproducible, and interpretable
modelling of antimicrobial resistance data.
@@ -762,7 +766,7 @@ fitted_workflow_time <- resistance_workflow_time %>%
# Make predictions
predictions_time <- fitted_workflow_time %>%
predict(test_time) %>%
- bind_cols(test_time)
+ bind_cols(test_time)
# Evaluate model
metrics_time <- predictions_time %>%
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index 9e045a3b4..63eebca50 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/articles/PCA.html b/articles/PCA.html
index 5bcc2e863..9e6b37592 100644
--- a/articles/PCA.html
+++ b/articles/PCA.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/articles/WHONET.html b/articles/WHONET.html
index db1390e71..be3d76e9f 100644
--- a/articles/WHONET.html
+++ b/articles/WHONET.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/articles/WISCA.html b/articles/WISCA.html
index a3b185874..0f4e31e84 100644
--- a/articles/WISCA.html
+++ b/articles/WISCA.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/articles/datasets.html b/articles/datasets.html
index 790f0f9df..2cb4a3487 100644
--- a/articles/datasets.html
+++ b/articles/datasets.html
@@ -30,7 +30,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
@@ -80,7 +80,7 @@
-
AMR 3.0.1.9007
+
AMR 3.0.1.9009
-
New
+
New
Integration with the tidymodels framework to allow seamless use of SIR, MIC and disk data in modelling pipelines via recipes
step_mic_log2() to transform <mic> columns with log2, and step_sir_numeric() to convert <sir> columns to numeric
@@ -61,7 +61,7 @@
Data set esbl_isolates to practise with AMR modelling
-
Changed
+
Changed
Fixed a bug in antibiogram() for when no antimicrobials are set
Added taniborbactam (TAN) and cefepime/taniborbactam (FTA) to the antimicrobials data set
Fixed a bug in as.sir() where for numeric input the arguments S, i, and R would not be considered (#244 )
diff --git a/news/index.md b/news/index.md
index e44a424b0..6dc3829d4 100644
--- a/news/index.md
+++ b/news/index.md
@@ -1,6 +1,6 @@
# Changelog
-## AMR 3.0.1.9007
+## AMR 3.0.1.9009
#### New
diff --git a/pkgdown.yml b/pkgdown.yml
index d9d3a2b5e..1bd3ba3ff 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
PCA: PCA.html
WHONET: WHONET.html
WISCA: WISCA.html
-last_built: 2025-12-22T08:44Z
+last_built: 2025-12-23T10:08Z
urls:
reference: https://amr-for-r.org/reference
article: https://amr-for-r.org/articles
diff --git a/reference/AMR-deprecated.html b/reference/AMR-deprecated.html
index 16931715b..953d6af65 100644
--- a/reference/AMR-deprecated.html
+++ b/reference/AMR-deprecated.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/AMR-options.html b/reference/AMR-options.html
index 1df3ceb65..9a08f41fa 100644
--- a/reference/AMR-options.html
+++ b/reference/AMR-options.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/AMR.html b/reference/AMR.html
index d9d0e316a..92974ba6a 100644
--- a/reference/AMR.html
+++ b/reference/AMR.html
@@ -21,7 +21,7 @@ The AMR package is available in English, Arabic, Bengali, Chinese, Czech, Danish
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/WHOCC.html b/reference/WHOCC.html
index 50df1e272..f09965ad3 100644
--- a/reference/WHOCC.html
+++ b/reference/WHOCC.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/WHONET.html b/reference/WHONET.html
index 2d31f0e64..1676f0300 100644
--- a/reference/WHONET.html
+++ b/reference/WHONET.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/ab_from_text.html b/reference/ab_from_text.html
index 8a247fd41..ee36314e5 100644
--- a/reference/ab_from_text.html
+++ b/reference/ab_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/ab_property.html b/reference/ab_property.html
index 2d1820497..fa9f2a211 100644
--- a/reference/ab_property.html
+++ b/reference/ab_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/add_custom_antimicrobials.html b/reference/add_custom_antimicrobials.html
index f363f5750..e5d964baa 100644
--- a/reference/add_custom_antimicrobials.html
+++ b/reference/add_custom_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/add_custom_microorganisms.html b/reference/add_custom_microorganisms.html
index bfae9cfa0..fcd8b4ca3 100644
--- a/reference/add_custom_microorganisms.html
+++ b/reference/add_custom_microorganisms.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/age.html b/reference/age.html
index c77de6fb7..77b7e3f5e 100644
--- a/reference/age.html
+++ b/reference/age.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
@@ -112,16 +112,16 @@
df
#> birth_date age age_exact age_at_y2k
-#> 1 1980-02-27 45 45.81644 19
-#> 2 1953-07-26 72 72.40822 46
-#> 3 1949-09-02 76 76.30411 50
-#> 4 1986-08-03 39 39.38630 13
-#> 5 1932-11-19 93 93.09041 67
-#> 6 1949-03-30 76 76.73151 50
-#> 7 1996-06-23 29 29.49863 3
-#> 8 1963-09-16 62 62.26575 36
-#> 9 1952-05-16 73 73.60274 47
-#> 10 1952-11-14 73 73.10411 47
+#> 1 1980-02-27 45 45.81918 19
+#> 2 1953-07-26 72 72.41096 46
+#> 3 1949-09-02 76 76.30685 50
+#> 4 1986-08-03 39 39.38904 13
+#> 5 1932-11-19 93 93.09315 67
+#> 6 1949-03-30 76 76.73425 50
+#> 7 1996-06-23 29 29.50137 3
+#> 8 1963-09-16 62 62.26849 36
+#> 9 1952-05-16 73 73.60548 47
+#> 10 1952-11-14 73 73.10685 47
On this page
diff --git a/reference/age.md b/reference/age.md
index 8f69323d5..30a852a28 100644
--- a/reference/age.md
+++ b/reference/age.md
@@ -81,14 +81,14 @@ df$age_at_y2k <- age(df$birth_date, "2000-01-01")
df
#> birth_date age age_exact age_at_y2k
-#> 1 1980-02-27 45 45.81644 19
-#> 2 1953-07-26 72 72.40822 46
-#> 3 1949-09-02 76 76.30411 50
-#> 4 1986-08-03 39 39.38630 13
-#> 5 1932-11-19 93 93.09041 67
-#> 6 1949-03-30 76 76.73151 50
-#> 7 1996-06-23 29 29.49863 3
-#> 8 1963-09-16 62 62.26575 36
-#> 9 1952-05-16 73 73.60274 47
-#> 10 1952-11-14 73 73.10411 47
+#> 1 1980-02-27 45 45.81918 19
+#> 2 1953-07-26 72 72.41096 46
+#> 3 1949-09-02 76 76.30685 50
+#> 4 1986-08-03 39 39.38904 13
+#> 5 1932-11-19 93 93.09315 67
+#> 6 1949-03-30 76 76.73425 50
+#> 7 1996-06-23 29 29.50137 3
+#> 8 1963-09-16 62 62.26849 36
+#> 9 1952-05-16 73 73.60548 47
+#> 10 1952-11-14 73 73.10685 47
```
diff --git a/reference/age_groups.html b/reference/age_groups.html
index f7d052cd9..6e83b3b9d 100644
--- a/reference/age_groups.html
+++ b/reference/age_groups.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/amr-tidymodels.html b/reference/amr-tidymodels.html
index e98074699..f6404b39b 100644
--- a/reference/amr-tidymodels.html
+++ b/reference/amr-tidymodels.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/antibiogram.html b/reference/antibiogram.html
index 2f145f4f8..fdc0d3a4f 100644
--- a/reference/antibiogram.html
+++ b/reference/antibiogram.html
@@ -9,7 +9,7 @@ Adhering to previously described approaches (see Source) and especially the Baye
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/antimicrobial_selectors.html b/reference/antimicrobial_selectors.html
index 808488158..330cc222f 100644
--- a/reference/antimicrobial_selectors.html
+++ b/reference/antimicrobial_selectors.html
@@ -17,7 +17,7 @@ my_data_with_all_these_columns %>%
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/antimicrobials.html b/reference/antimicrobials.html
index d94c888ad..e366cc536 100644
--- a/reference/antimicrobials.html
+++ b/reference/antimicrobials.html
@@ -9,7 +9,7 @@ The antibiotics data set has been renamed to antimicrobials. The old name will b
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/as.ab.html b/reference/as.ab.html
index 4e468cdb1..1cdf2a40d 100644
--- a/reference/as.ab.html
+++ b/reference/as.ab.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/as.av.html b/reference/as.av.html
index 73b41616c..92689b968 100644
--- a/reference/as.av.html
+++ b/reference/as.av.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/as.disk.html b/reference/as.disk.html
index faa5510ef..5a1b6b549 100644
--- a/reference/as.disk.html
+++ b/reference/as.disk.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/as.mic.html b/reference/as.mic.html
index 910d42bab..cad445346 100644
--- a/reference/as.mic.html
+++ b/reference/as.mic.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/as.mo.html b/reference/as.mo.html
index 6bb4f00f1..d9314c518 100644
--- a/reference/as.mo.html
+++ b/reference/as.mo.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/as.sir.html b/reference/as.sir.html
index e5df904b5..8b629e5a5 100644
--- a/reference/as.sir.html
+++ b/reference/as.sir.html
@@ -9,7 +9,7 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
@@ -416,10 +416,10 @@ Breakpoints are currently implemented from EUCAST 2011-2025 and CLSI 2011-2025,
#> # A tibble: 4 × 18
#> datetime index method ab_given mo_given host_given input_given
#> <dttm> <int> <chr> <chr> <chr> <chr> <chr>
-#> 1 2025-12-22 08:45:24 1 MIC amoxicillin Escherich… human 8
-#> 2 2025-12-22 08:45:24 1 MIC cipro Escherich… human 0.256
-#> 3 2025-12-22 08:45:24 1 DISK tobra Escherich… human 16
-#> 4 2025-12-22 08:45:24 1 DISK genta Escherich… human 18
+#> 1 2025-12-23 10:09:01 1 MIC amoxicillin Escherich… human 8
+#> 2 2025-12-23 10:09:02 1 MIC cipro Escherich… human 0.256
+#> 3 2025-12-23 10:09:02 1 DISK tobra Escherich… human 16
+#> 4 2025-12-23 10:09:02 1 DISK genta Escherich… human 18
#> # ℹ 11 more variables: ab <ab>, mo <mo>, host <chr>, input <chr>,
#> # outcome <sir>, notes <chr>, guideline <chr>, ref_table <chr>, uti <lgl>,
#> # breakpoint_S_R <chr>, site <chr>
diff --git a/reference/as.sir.md b/reference/as.sir.md
index 99cf6ce5b..3b02338dc 100644
--- a/reference/as.sir.md
+++ b/reference/as.sir.md
@@ -648,10 +648,10 @@ sir_interpretation_history()
#> # A tibble: 4 × 18
#> datetime index method ab_given mo_given host_given input_given
#>
-#> 1 2025-12-22 08:45:24 1 MIC amoxicillin Escherich… human 8
-#> 2 2025-12-22 08:45:24 1 MIC cipro Escherich… human 0.256
-#> 3 2025-12-22 08:45:24 1 DISK tobra Escherich… human 16
-#> 4 2025-12-22 08:45:24 1 DISK genta Escherich… human 18
+#> 1 2025-12-23 10:09:01 1 MIC amoxicillin Escherich… human 8
+#> 2 2025-12-23 10:09:02 1 MIC cipro Escherich… human 0.256
+#> 3 2025-12-23 10:09:02 1 DISK tobra Escherich… human 16
+#> 4 2025-12-23 10:09:02 1 DISK genta Escherich… human 18
#> # ℹ 11 more variables: ab , mo , host , input ,
#> # outcome , notes , guideline , ref_table , uti ,
#> # breakpoint_S_R , site
diff --git a/reference/atc_online.html b/reference/atc_online.html
index ec685a5d6..24c57e82b 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/av_from_text.html b/reference/av_from_text.html
index dd76e4ef4..3dcd10250 100644
--- a/reference/av_from_text.html
+++ b/reference/av_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/av_property.html b/reference/av_property.html
index 678859212..ac4738f71 100644
--- a/reference/av_property.html
+++ b/reference/av_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/availability.html b/reference/availability.html
index 180001d45..e6afb9970 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index 8ff0abd84..ef7e3642b 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html
index e50f9e432..5f2152cdf 100644
--- a/reference/clinical_breakpoints.html
+++ b/reference/clinical_breakpoints.html
@@ -21,7 +21,7 @@ Use as.sir() to transform MICs or disks measurements to SIR values."> AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/count.html b/reference/count.html
index 0e1440ff3..f4bcab1bb 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -9,7 +9,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index 1bddb658e..18b1adadd 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/custom_mdro_guideline.html b/reference/custom_mdro_guideline.html
index c9404872d..9f9e9179b 100644
--- a/reference/custom_mdro_guideline.html
+++ b/reference/custom_mdro_guideline.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/dosage.html b/reference/dosage.html
index 7ec78786c..356329200 100644
--- a/reference/dosage.html
+++ b/reference/dosage.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/esbl_isolates.html b/reference/esbl_isolates.html
index 37ffa4197..c51109284 100644
--- a/reference/esbl_isolates.html
+++ b/reference/esbl_isolates.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/eucast_rules.html b/reference/eucast_rules.html
index 262a8dab5..d6876fd90 100644
--- a/reference/eucast_rules.html
+++ b/reference/eucast_rules.html
@@ -9,7 +9,7 @@ To improve the interpretation of the antibiogram before EUCAST rules are applied
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/example_isolates.html b/reference/example_isolates.html
index 7490f1c29..f8b1a0cfd 100644
--- a/reference/example_isolates.html
+++ b/reference/example_isolates.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/example_isolates_unclean.html b/reference/example_isolates_unclean.html
index 287ca068e..a0cd84c4d 100644
--- a/reference/example_isolates_unclean.html
+++ b/reference/example_isolates_unclean.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/export_ncbi_biosample.html b/reference/export_ncbi_biosample.html
index 70dbcfbb6..cf4792e0c 100644
--- a/reference/export_ncbi_biosample.html
+++ b/reference/export_ncbi_biosample.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/first_isolate.html b/reference/first_isolate.html
index b0023a544..31b14addf 100644
--- a/reference/first_isolate.html
+++ b/reference/first_isolate.html
@@ -9,7 +9,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/g.test.html b/reference/g.test.html
index 904b9ec06..9742342e9 100644
--- a/reference/g.test.html
+++ b/reference/g.test.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/get_episode.html b/reference/get_episode.html
index e96d0ed47..cffdccab2 100644
--- a/reference/get_episode.html
+++ b/reference/get_episode.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/ggplot_pca.html b/reference/ggplot_pca.html
index 6fbfd0cf2..400d61504 100644
--- a/reference/ggplot_pca.html
+++ b/reference/ggplot_pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/ggplot_sir.html b/reference/ggplot_sir.html
index 42a7ed3d1..4e58c92c1 100644
--- a/reference/ggplot_sir.html
+++ b/reference/ggplot_sir.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/guess_ab_col.html b/reference/guess_ab_col.html
index 669cf3e09..c362bfb7c 100644
--- a/reference/guess_ab_col.html
+++ b/reference/guess_ab_col.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/index.html b/reference/index.html
index b2185a151..b36d6c8bb 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/intrinsic_resistant.html b/reference/intrinsic_resistant.html
index 1ff4f8b7e..68da3b2c3 100644
--- a/reference/intrinsic_resistant.html
+++ b/reference/intrinsic_resistant.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/italicise_taxonomy.html b/reference/italicise_taxonomy.html
index 6b5e37ca7..e2bc0c6d2 100644
--- a/reference/italicise_taxonomy.html
+++ b/reference/italicise_taxonomy.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/join.html b/reference/join.html
index ebb36d5df..7ee0c4f4f 100644
--- a/reference/join.html
+++ b/reference/join.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/key_antimicrobials.html b/reference/key_antimicrobials.html
index b56ab209d..01836f84f 100644
--- a/reference/key_antimicrobials.html
+++ b/reference/key_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/kurtosis.html b/reference/kurtosis.html
index da0060f59..0901915d2 100644
--- a/reference/kurtosis.html
+++ b/reference/kurtosis.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/like.html b/reference/like.html
index bf68d4cce..235da4236 100644
--- a/reference/like.html
+++ b/reference/like.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/mdro.html b/reference/mdro.html
index 36778e7ff..08de4f2b0 100644
--- a/reference/mdro.html
+++ b/reference/mdro.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/mean_amr_distance.html b/reference/mean_amr_distance.html
index 00248de80..0829691c9 100644
--- a/reference/mean_amr_distance.html
+++ b/reference/mean_amr_distance.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/microorganisms.codes.html b/reference/microorganisms.codes.html
index 298e9a984..40f783080 100644
--- a/reference/microorganisms.codes.html
+++ b/reference/microorganisms.codes.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/microorganisms.groups.html b/reference/microorganisms.groups.html
index 38dcef883..5d3328a12 100644
--- a/reference/microorganisms.groups.html
+++ b/reference/microorganisms.groups.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/microorganisms.html b/reference/microorganisms.html
index 061b227bb..4100a7c39 100644
--- a/reference/microorganisms.html
+++ b/reference/microorganisms.html
@@ -9,7 +9,7 @@ This data set is carefully crafted, yet made 100% reproducible from public and a
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/mo_matching_score.html b/reference/mo_matching_score.html
index 521c48a46..e35659fcc 100644
--- a/reference/mo_matching_score.html
+++ b/reference/mo_matching_score.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/mo_property.html b/reference/mo_property.html
index f7f328de6..554a93a53 100644
--- a/reference/mo_property.html
+++ b/reference/mo_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/mo_source.html b/reference/mo_source.html
index 4d27f8bb9..5477933e9 100644
--- a/reference/mo_source.html
+++ b/reference/mo_source.html
@@ -9,7 +9,7 @@ This is the fastest way to have your organisation (or analysis) specific codes p
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/pca.html b/reference/pca.html
index 789ab3745..e59edadbe 100644
--- a/reference/pca.html
+++ b/reference/pca.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/plot.html b/reference/plot.html
index 6a523a285..22d3ac208 100644
--- a/reference/plot.html
+++ b/reference/plot.html
@@ -9,7 +9,7 @@ Especially the scale_*_mic() functions are relevant wrappers to plot MIC values
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/proportion.html b/reference/proportion.html
index 1db491868..00de92168 100644
--- a/reference/proportion.html
+++ b/reference/proportion.html
@@ -9,7 +9,7 @@ resistance() should be used to calculate resistance, susceptibility() should be
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/random.html b/reference/random.html
index 9e341f96e..932848c15 100644
--- a/reference/random.html
+++ b/reference/random.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/resistance_predict.html b/reference/resistance_predict.html
index 5a9020279..fd6173c1c 100644
--- a/reference/resistance_predict.html
+++ b/reference/resistance_predict.html
@@ -9,7 +9,7 @@ NOTE: These functions are deprecated and will be removed in a future version. Us
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/skewness.html b/reference/skewness.html
index 0dd5e09fb..13f4d83a0 100644
--- a/reference/skewness.html
+++ b/reference/skewness.html
@@ -9,7 +9,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/top_n_microorganisms.html b/reference/top_n_microorganisms.html
index c5d3ee698..8f1103f84 100644
--- a/reference/top_n_microorganisms.html
+++ b/reference/top_n_microorganisms.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/reference/translate.html b/reference/translate.html
index bdf13b9d3..e5f3dc3c2 100644
--- a/reference/translate.html
+++ b/reference/translate.html
@@ -7,7 +7,7 @@
AMR (for R)
- 3.0.1.9007
+ 3.0.1.9009
diff --git a/search.json b/search.json
index 589f81343..0ef1a0f9c 100644
--- a/search.json
+++ b/search.json
@@ -1 +1 @@
-[{"path":"https://amr-for-r.org/articles/AMR.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Conduct AMR data analysis","text":"Conducting AMR data analysis unfortunately requires -depth knowledge different scientific fields, makes hard right. least, requires: Good questions (always start !) reliable data thorough understanding (clinical) epidemiology, understand clinical epidemiological relevance possible bias results thorough understanding (clinical) microbiology/infectious diseases, understand microorganisms causal infections implications pharmaceutical treatment, well understanding intrinsic acquired microbial resistance Experience data analysis microbiological tests results, understand determination limitations MIC values interpretations SIR values Availability biological taxonomy microorganisms probably normalisation factors pharmaceuticals, defined daily doses (DDD) Available (inter-)national guidelines, profound methods apply course, instantly provide knowledge experience. AMR package, aimed providing (1) tools simplify antimicrobial resistance data cleaning, transformation analysis, (2) methods easily incorporate international guidelines (3) scientifically reliable reference data, including requirements mentioned . AMR package enables standardised reproducible AMR data analysis, application evidence-based rules, determination first isolates, translation various codes microorganisms antimicrobial agents, determination (multi-drug) resistant microorganisms, calculation antimicrobial resistance, prevalence future trends.","code":""},{"path":"https://amr-for-r.org/articles/AMR.html","id":"preparation","dir":"Articles","previous_headings":"","what":"Preparation","title":"Conduct AMR data analysis","text":"tutorial, create fake demonstration data work . can skip Cleaning data already data ready. start analysis, try make structure data generally look like :","code":""},{"path":"https://amr-for-r.org/articles/AMR.html","id":"needed-r-packages","dir":"Articles","previous_headings":"Preparation","what":"Needed R packages","title":"Conduct AMR data analysis","text":"many uses R, need additional packages AMR data analysis. package works closely together tidyverse packages dplyr ggplot2 RStudio. tidyverse tremendously improves way conduct data science - allows natural way writing syntaxes creating beautiful plots R. also use cleaner package, can used cleaning data creating frequency tables. AMR package contains data set example_isolates_unclean, might look data users extracted laboratory systems: AMR data analysis, like microorganism column contain valid, --date taxonomy, antibiotic columns cleaned SIR values well.","code":"library(dplyr) library(ggplot2) library(AMR) # (if not yet installed, install with:) # install.packages(c(\"dplyr\", \"ggplot2\", \"AMR\")) example_isolates_unclean #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 E. coli R I S S #> 2 R7 A 2018-04-03 K. pneumoniae R I S S #> 3 P3 A 2014-09-19 E. coli R S S S #> 4 P10 A 2015-12-10 E. coli S I S S #> 5 B7 A 2015-03-02 E. coli S S S S #> 6 W3 A 2018-03-31 S. aureus R S R S #> 7 J8 A 2016-06-14 E. coli R S S S #> 8 M3 A 2015-10-25 E. coli R S S S #> 9 J3 A 2019-06-19 E. coli S S S S #> 10 G6 A 2015-04-27 S. aureus S S S S #> # ℹ 2,990 more rows # we will use 'our_data' as the data set name for this tutorial our_data <- example_isolates_unclean"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"taxonomy-of-microorganisms","dir":"Articles","previous_headings":"Preparation","what":"Taxonomy of microorganisms","title":"Conduct AMR data analysis","text":".mo(), users can transform arbitrary microorganism names codes current taxonomy. AMR package contains --date taxonomic data. specific, currently included data retrieved 24 Jun 2024. codes AMR packages come .mo() short, still human readable. importantly, .mo() supports kinds input: first character codes denote taxonomic kingdom, Bacteria (B), Fungi (F), Protozoa (P). AMR package also contain functions directly retrieve taxonomic properties, name, genus, species, family, order, even Gram-stain. start mo_ use .mo() internally, still arbitrary user input can used: Now can thus clean data: Apparently, uncertainty translation taxonomic codes. Let’s check : ’s good.","code":"as.mo(\"Klebsiella pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"K. pneumoniae\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLEPNE\") #> Class 'mo' #> [1] B_KLBSL_PNMN as.mo(\"KLPN\") #> Class 'mo' #> [1] B_KLBSL_PNMN mo_family(\"K. pneumoniae\") #> [1] \"Enterobacteriaceae\" mo_genus(\"K. pneumoniae\") #> [1] \"Klebsiella\" mo_species(\"K. pneumoniae\") #> [1] \"pneumoniae\" mo_gramstain(\"Klebsiella pneumoniae\") #> [1] \"Gram-negative\" mo_ref(\"K. pneumoniae\") #> [1] \"Trevisan, 1887\" mo_snomed(\"K. pneumoniae\") #> [[1]] #> [1] \"1098101000112102\" \"446870005\" \"1098201000112108\" \"409801009\" #> [5] \"56415008\" \"714315002\" \"713926009\" our_data$bacteria <- as.mo(our_data$bacteria, info = TRUE) #> ℹ Retrieved values from the `microorganisms.codes` data set for \"ESCCOL\", #> \"KLEPNE\", \"STAAUR\", and \"STRPNE\". #> ℹ Microorganism translation was uncertain for four microorganisms. Run #> `mo_uncertainties()` to review these uncertainties, or use #> `add_custom_microorganisms()` to add custom entries. mo_uncertainties() #> Matching scores are based on the resemblance between the input and the full #> taxonomic name, and the pathogenicity in humans. See `?mo_matching_score`. #> Colour keys: 0.000-0.549 0.550-0.649 0.650-0.749 0.750-1.000 #> #> -------------------------------------------------------------------------------- #> \"E. coli\" -> Escherichia coli (B_ESCHR_COLI, 0.688) #> Also matched: Enterococcus crotali (0.650), Escherichia coli coli #> (0.643), Escherichia coli expressing (0.611), Enterobacter cowanii #> (0.600), Enterococcus columbae (0.595), Enterococcus camelliae (0.591), #> Enterococcus casseliflavus (0.577), Enterobacter cloacae cloacae #> (0.571), Enterobacter cloacae complex (0.571), and Enterobacter cloacae #> dissolvens (0.565) #> -------------------------------------------------------------------------------- #> \"K. pneumoniae\" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786) #> Also matched: Klebsiella pneumoniae complex (0.707), Klebsiella #> pneumoniae ozaenae (0.707), Klebsiella pneumoniae pneumoniae (0.688), #> Klebsiella pneumoniae rhinoscleromatis (0.658), Klebsiella pasteurii #> (0.500), Klebsiella planticola (0.500), Kingella potus (0.400), #> Kluyveromyces pseudotropicale (0.386), Kluyveromyces pseudotropicalis #> (0.363), and Kosakonia pseudosacchari (0.361) #> -------------------------------------------------------------------------------- #> \"S. aureus\" -> Staphylococcus aureus (B_STPHY_AURS, 0.690) #> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus #> argenteus (0.625), Staphylococcus aureus anaerobius (0.625), #> Staphylococcus auricularis (0.615), Salmonella Aurelianis (0.595), #> Salmonella Aarhus (0.588), Salmonella Amounderness (0.587), #> Staphylococcus argensis (0.587), Streptococcus australis (0.587), and #> Salmonella choleraesuis arizonae (0.562) #> -------------------------------------------------------------------------------- #> \"S. pneumoniae\" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750) #> Also matched: Streptococcus pseudopneumoniae (0.700), Streptococcus #> phocae salmonis (0.552), Serratia proteamaculans quinovora (0.545), #> Streptococcus pseudoporcinus (0.536), Staphylococcus piscifermentans #> (0.533), Staphylococcus pseudintermedius (0.532), Serratia #> proteamaculans proteamaculans (0.526), Streptococcus gallolyticus #> pasteurianus (0.526), Salmonella Portanigra (0.524), and Streptococcus #> periodonticum (0.519) #> #> Only the first 10 other matches of each record are shown. Run #> `print(mo_uncertainties(), n = ...)` to view more entries, or save #> `mo_uncertainties()` to an object."},{"path":"https://amr-for-r.org/articles/AMR.html","id":"antibiotic-results","dir":"Articles","previous_headings":"Preparation","what":"Antibiotic results","title":"Conduct AMR data analysis","text":"column antibiotic test results must also cleaned. AMR package comes three new data types work test results: mic minimal inhibitory concentrations (MIC), disk disk diffusion diameters, sir SIR data interpreted already. package can also determine SIR values based MIC disk diffusion values, read .sir() page. now, just clean SIR columns data using dplyr: basically cleaning, time start data inclusion.","code":"# method 1, be explicit about the columns: our_data <- our_data %>% mutate_at(vars(AMX:GEN), as.sir) # method 2, let the AMR package determine the eligible columns our_data <- our_data %>% mutate_if(is_sir_eligible, as.sir) # result: our_data #> # A tibble: 3,000 × 8 #> patient_id hospital date bacteria AMX AMC CIP GEN #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S #> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S #> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S #> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S #> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S #> # ℹ 2,990 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"first-isolates","dir":"Articles","previous_headings":"Preparation","what":"First isolates","title":"Conduct AMR data analysis","text":"need know isolates can actually use analysis without repetition bias. conduct analysis antimicrobial resistance, must include first isolate every patient per episode (Hindler et al., Clin Infect Dis. 2007). , easily get overestimate underestimate resistance antibiotic. Imagine patient admitted MRSA found 5 different blood cultures following weeks (yes, countries like Netherlands blood drawing policies). resistance percentage oxacillin isolates overestimated, included MRSA . clearly selection bias. Clinical Laboratory Standards Institute (CLSI) appoints follows: (…) preparing cumulative antibiogram guide clinical decisions empirical antimicrobial therapy initial infections, first isolate given species per patient, per analysis period (eg, one year) included, irrespective body site, antimicrobial susceptibility profile, phenotypical characteristics (eg, biotype). first isolate easily identified, cumulative antimicrobial susceptibility test data prepared using first isolate generally comparable cumulative antimicrobial susceptibility test data calculated methods, providing duplicate isolates excluded. M39-A4 Analysis Presentation Cumulative Antimicrobial Susceptibility Test Data, 4th Edition. CLSI, 2014. Chapter 6.4 AMR package includes methodology first_isolate() function able apply four different methods defined Hindler et al. 2007: phenotype-based, episode-based, patient-based, isolate-based. right method depends goals analysis, default phenotype-based method case method properly correct duplicate isolates. Read methods first_isolate() page. outcome function can easily added data: 91% suitable resistance analysis! can now filter filter() function, also dplyr package: future use, two syntaxes can shortened: end 2 730 isolates analysis. Now data looks like: Time analysis.","code":"our_data <- our_data %>% mutate(first = first_isolate(info = TRUE)) #> ℹ Determining first isolates using an episode length of 365 days #> ℹ Using column 'bacteria' as input for `col_mo`. #> ℹ Using column 'date' as input for `col_date`. #> ℹ Using column 'patient_id' as input for `col_patient_id`. #> ℹ Basing inclusion on all antimicrobial results, using a points threshold #> of 2 #> => Found 2,730 'phenotype-based' first isolates (91.0% of total where a #> microbial ID was available) our_data_1st <- our_data %>% filter(first == TRUE) our_data_1st <- our_data %>% filter_first_isolate() our_data_1st #> # A tibble: 2,730 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE #> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE #> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S TRUE #> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE #> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE #> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE #> 7 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE #> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE #> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE #> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE #> # ℹ 2,720 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"analysing-the-data","dir":"Articles","previous_headings":"","what":"Analysing the data","title":"Conduct AMR data analysis","text":"base R summary() function gives good first impression, comes support new mo sir classes now data set:","code":"summary(our_data_1st) #> patient_id hospital date #> Length:2730 Length:2730 Min. :2011-01-01 #> Class :character Class :character 1st Qu.:2013-04-06 #> Mode :character Mode :character Median :2015-06-04 #> Mean :2015-06-09 #> 3rd Qu.:2017-08-14 #> Max. :2019-12-27 #> bacteria AMX AMC #> Class :mo Class:sir Class:sir #> :0 %S :40.1% (n=1071) %S :51.1% (n=1354) #> Unique:4 %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> #1 :B_ESCHR_COLI %I :17.0% (n=453) %I :12.7% (n=335) #> #2 :B_STPHY_AURS %R :42.9% (n=1147) %R :36.2% (n=959) #> #3 :B_STRPT_PNMN %NI : 0.0% (n=0) %NI : 0.0% (n=0) #> CIP GEN first #> Class:sir Class:sir Mode:logical #> %S :52.2% (n=1426) %S :60.7% (n=1656) TRUE:2730 #> %SDD : 0.0% (n=0) %SDD : 0.0% (n=0) #> %I : 6.5% (n=178) %I : 3.0% (n=83) #> %R :41.2% (n=1126) %R :36.3% (n=991) #> %NI : 0.0% (n=0) %NI : 0.0% (n=0) glimpse(our_data_1st) #> Rows: 2,730 #> Columns: 9 #> $ patient_id \"J3\", \"R7\", \"P3\", \"P10\", \"B7\", \"W3\", \"M3\", \"J3\", \"G6\", \"P4\"… #> $ hospital \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\", \"A\",… #> $ date 2012-11-21, 2018-04-03, 2014-09-19, 2015-12-10, 2015-03-02… #> $ bacteria \"B_ESCHR_COLI\", \"B_KLBSL_PNMN\", \"B_ESCHR_COLI\", \"B_ESCHR_COL… #> $ AMX R, R, R, S, S, R, R, S, S, S, S, R, S, S, R, R, R, R, S, R,… #> $ AMC I, I, S, I, S, S, S, S, S, S, S, S, S, S, S, S, S, R, S, S,… #> $ CIP S, S, S, S, S, R, S, S, S, S, S, S, S, S, S, S, S, S, S, S,… #> $ GEN S, S, S, S, S, S, S, S, S, S, S, R, S, S, S, S, S, S, S, S,… #> $ first TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,… # number of unique values per column: sapply(our_data_1st, n_distinct) #> patient_id hospital date bacteria AMX AMC CIP #> 260 3 1854 4 4 4 3 #> GEN first #> 3 1"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"availability-of-species","dir":"Articles","previous_headings":"Analysing the data","what":"Availability of species","title":"Conduct AMR data analysis","text":"just get idea species distributed, create frequency table count() based name microorganisms:","code":"our_data %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1518 #> 2 Staphylococcus aureus 730 #> 3 Streptococcus pneumoniae 426 #> 4 Klebsiella pneumoniae 326 our_data_1st %>% count(mo_name(bacteria), sort = TRUE) #> # A tibble: 4 × 2 #> `mo_name(bacteria)` n #> #> 1 Escherichia coli 1326 #> 2 Staphylococcus aureus 684 #> 3 Streptococcus pneumoniae 401 #> 4 Klebsiella pneumoniae 319"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"select-and-filter-with-antibiotic-selectors","dir":"Articles","previous_headings":"Analysing the data","what":"Select and filter with antibiotic selectors","title":"Conduct AMR data analysis","text":"Using -called antibiotic class selectors, can select filter columns based antibiotic class antibiotic results :","code":"our_data_1st %>% select(date, aminoglycosides()) #> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin) #> # A tibble: 2,730 × 2 #> date GEN #> #> 1 2012-11-21 S #> 2 2018-04-03 S #> 3 2014-09-19 S #> 4 2015-12-10 S #> 5 2015-03-02 S #> 6 2018-03-31 S #> 7 2015-10-25 S #> 8 2019-06-19 S #> 9 2015-04-27 S #> 10 2011-06-21 S #> # ℹ 2,720 more rows our_data_1st %>% select(bacteria, betalactams()) #> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 2,730 × 3 #> bacteria AMX AMC #> #> 1 B_ESCHR_COLI R I #> 2 B_KLBSL_PNMN R I #> 3 B_ESCHR_COLI R S #> 4 B_ESCHR_COLI S I #> 5 B_ESCHR_COLI S S #> 6 B_STPHY_AURS R S #> 7 B_ESCHR_COLI R S #> 8 B_ESCHR_COLI S S #> 9 B_STPHY_AURS S S #> 10 B_ESCHR_COLI S S #> # ℹ 2,720 more rows our_data_1st %>% select(bacteria, where(is.sir)) #> # A tibble: 2,730 × 5 #> bacteria AMX AMC CIP GEN #> #> 1 B_ESCHR_COLI R I S S #> 2 B_KLBSL_PNMN R I S S #> 3 B_ESCHR_COLI R S S S #> 4 B_ESCHR_COLI S I S S #> 5 B_ESCHR_COLI S S S S #> 6 B_STPHY_AURS R S R S #> 7 B_ESCHR_COLI R S S S #> 8 B_ESCHR_COLI S S S S #> 9 B_STPHY_AURS S S S S #> 10 B_ESCHR_COLI S S S S #> # ℹ 2,720 more rows # filtering using AB selectors is also possible: our_data_1st %>% filter(any(aminoglycosides() == \"R\")) #> ℹ For `aminoglycosides()` using column 'GEN' (gentamicin) #> # A tibble: 991 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE #> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE #> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE #> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE #> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE #> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE #> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE #> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE #> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE #> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE #> # ℹ 981 more rows our_data_1st %>% filter(all(betalactams() == \"R\")) #> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 461 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 451 more rows # even works in base R (since R 3.0): our_data_1st[all(betalactams() == \"R\"), ] #> ℹ For `betalactams()` using columns 'AMX' (amoxicillin) and 'AMC' #> (amoxicillin/clavulanic acid) #> # A tibble: 461 × 9 #> patient_id hospital date bacteria AMX AMC CIP GEN first #> #> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE #> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE #> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE #> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE #> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE #> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE #> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE #> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE #> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE #> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 451 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"generate-antibiograms","dir":"Articles","previous_headings":"Analysing the data","what":"Generate antibiograms","title":"Conduct AMR data analysis","text":"Since AMR v2.0 (March 2023), easy create different types antibiograms, support 20 different languages. four antibiogram types, proposed Klinker et al. (2021, DOI 10.1177/20499361211011373), supported new antibiogram() function: Traditional Antibiogram (TA) e.g, susceptibility Pseudomonas aeruginosa piperacillin/tazobactam (TZP) Combination Antibiogram (CA) e.g, sdditional susceptibility Pseudomonas aeruginosa TZP + tobramycin versus TZP alone Syndromic Antibiogram (SA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) Weighted-Incidence Syndromic Combination Antibiogram (WISCA) e.g, susceptibility Pseudomonas aeruginosa TZP among respiratory specimens (obtained among ICU patients ) male patients age >=65 years heart failure section, show use antibiogram() function create antibiogram types. starters, included example_isolates data set looks like:","code":"example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL , COL , MUP , …"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"traditional-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Traditional Antibiogram","title":"Conduct AMR data analysis","text":"create traditional antibiogram, simply state antibiotics used. antibiotics argument antibiogram() function supports (combination) previously mentioned antibiotic class selectors: Notice antibiogram() function automatically prints right format using Quarto R Markdown (page), even applies italics taxonomic names (using italicise_taxonomy() internally). also uses language OS either English, Arabic, Bengali, Chinese, Czech, Danish, Dutch, Finnish, French, German, Greek, Hindi, Indonesian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swahili, Swedish, Turkish, Ukrainian, Urdu, Vietnamese. next example, force language Spanish using language argument:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems())) #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem) antibiogram(example_isolates, mo_transform = \"gramstain\", antibiotics = aminoglycosides(), ab_transform = \"name\", language = \"es\") #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"combined-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Combined Antibiogram","title":"Conduct AMR data analysis","text":"create combined antibiogram, use antibiotic codes names plus + character like :","code":"combined_ab <- antibiogram(example_isolates, antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), ab_transform = NULL) combined_ab"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"syndromic-antibiogram","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Syndromic Antibiogram","title":"Conduct AMR data analysis","text":"create syndromic antibiogram, syndromic_group argument must used. can column data, e.g. ifelse() calculations based certain columns:","code":"antibiogram(example_isolates, antibiotics = c(aminoglycosides(), carbapenems()), syndromic_group = \"ward\") #> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB' #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"weighted-incidence-syndromic-combination-antibiogram-wisca","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Weighted-Incidence Syndromic Combination Antibiogram (WISCA)","title":"Conduct AMR data analysis","text":"create Weighted-Incidence Syndromic Combination Antibiogram (WISCA), simply set wisca = TRUE antibiogram() function, use dedicated wisca() function. Unlike traditional antibiograms, WISCA provides syndrome-based susceptibility estimates, weighted pathogen incidence antimicrobial susceptibility patterns. WISCA uses Bayesian decision model integrate data multiple pathogens, improving empirical therapy guidance, especially low-incidence infections. pathogen-agnostic, meaning results syndrome-based rather stratified microorganism. reliable results, ensure data includes first isolates (use first_isolate()) consider filtering top n species (use top_n_microorganisms()), WISCA outcomes meaningful based robust incidence estimates. patient- syndrome-specific WISCA, run function grouped tibble, .e., using group_by() first:","code":"example_isolates %>% wisca(antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"), minimum = 10) # Recommended threshold: ≥30 example_isolates %>% top_n_microorganisms(n = 10) %>% group_by(age_group = age_groups(age, c(25, 50, 75)), gender) %>% wisca(antibiotics = c(\"TZP\", \"TZP+TOB\", \"TZP+GEN\"))"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"plotting-antibiograms","dir":"Articles","previous_headings":"Analysing the data > Generate antibiograms","what":"Plotting antibiograms","title":"Conduct AMR data analysis","text":"Antibiograms can plotted using autoplot() ggplot2 packages, since AMR package provides extension function: calculate antimicrobial resistance sensible way, also correcting results, use resistance() susceptibility() functions.","code":"autoplot(combined_ab)"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"resistance-percentages","dir":"Articles","previous_headings":"Analysing the data","what":"Resistance percentages","title":"Conduct AMR data analysis","text":"functions resistance() susceptibility() can used calculate antimicrobial resistance susceptibility. specific analyses, functions proportion_S(), proportion_SI(), proportion_I(), proportion_IR() proportion_R() can used determine proportion specific antimicrobial outcome. functions contain minimum argument, denoting minimum required number test results returning value. functions otherwise return NA. default minimum = 30, following CLSI M39-A4 guideline applying microbial epidemiology. per EUCAST guideline 2019, calculate resistance proportion R (proportion_R(), equal resistance()) susceptibility proportion S (proportion_SI(), equal susceptibility()). functions can used : can used conjunction group_by() summarise(), dplyr package:","code":"our_data_1st %>% resistance(AMX) #> [1] 0.4294272 our_data_1st %>% group_by(hospital) %>% summarise(amoxicillin = resistance(AMX)) #> # A tibble: 3 × 2 #> hospital amoxicillin #> #> 1 A 0.341 #> 2 B 0.586 #> 3 C 0.370"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"interpreting-mic-and-disk-diffusion-values","dir":"Articles","previous_headings":"Analysing the data","what":"Interpreting MIC and Disk Diffusion Values","title":"Conduct AMR data analysis","text":"Minimal inhibitory concentration (MIC) values disk diffusion diameters can interpreted clinical breakpoints (SIR) using .sir(). ’s example randomly generated MIC values Klebsiella pneumoniae ciprofloxacin: allows direct interpretation according EUCAST CLSI breakpoints, facilitating automated AMR data processing.","code":"set.seed(123) mic_values <- random_mic(100) sir_values <- as.sir(mic_values, mo = \"K. pneumoniae\", ab = \"cipro\", guideline = \"EUCAST 2024\") my_data <- tibble(MIC = mic_values, SIR = sir_values) my_data #> # A tibble: 100 × 2 #> MIC SIR #> #> 1 <=0.0001 S #> 2 0.0160 S #> 3 >=8.0000 R #> 4 0.0320 S #> 5 0.0080 S #> 6 64.0000 R #> 7 0.0080 S #> 8 0.1250 S #> 9 0.0320 S #> 10 0.0002 S #> # ℹ 90 more rows"},{"path":"https://amr-for-r.org/articles/AMR.html","id":"plotting-mic-and-sir-interpretations","dir":"Articles","previous_headings":"Analysing the data","what":"Plotting MIC and SIR Interpretations","title":"Conduct AMR data analysis","text":"can visualise MIC distributions SIR interpretations using ggplot2, using new scale_y_mic() y-axis scale_colour_sir() colour-code SIR categories. plot provides intuitive way assess susceptibility patterns across different groups incorporating clinical breakpoints. straightforward less manual approach, ggplot2’s function autoplot() extended package directly plot MIC disk diffusion values: Author: Dr. Matthijs Berends, 23rd Feb 2025","code":"# add a group my_data$group <- rep(c(\"A\", \"B\", \"C\", \"D\"), each = 25) ggplot(my_data, aes(x = group, y = MIC, colour = SIR)) + geom_jitter(width = 0.2, size = 2) + geom_boxplot(fill = NA, colour = \"grey40\") + scale_y_mic() + scale_colour_sir() + labs(title = \"MIC Distribution and SIR Interpretation\", x = \"Sample Groups\", y = \"MIC (mg/L)\") autoplot(mic_values) # by providing `mo` and `ab`, colours will indicate the SIR interpretation: autoplot(mic_values, mo = \"K. pneumoniae\", ab = \"cipro\", guideline = \"EUCAST 2024\")"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"AMR for Python","text":"AMR package R powerful tool antimicrobial resistance (AMR) analysis. provides extensive features handling microbial antimicrobial data. However, work primarily Python, now intuitive option available: AMR Python package. Python package wrapper around AMR R package. uses rpy2 package internally. Despite need R installed, Python users can now easily work AMR data directly Python code.","code":""},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"prerequisites","dir":"Articles","previous_headings":"","what":"Prerequisites","title":"AMR for Python","text":"package tested virtual environment (venv). can set environment running: can activate environment, venv ready work .","code":"# linux and macOS: python -m venv /path/to/new/virtual/environment # Windows: python -m venv C:\\path\\to\\new\\virtual\\environment"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"install-amr","dir":"Articles","previous_headings":"","what":"Install AMR","title":"AMR for Python","text":"Since Python package available official Python Package Index, can just run: Make sure R installed. need install AMR R package, installed automatically. Linux: macOS (using Homebrew): Windows, visit CRAN download page download install R.","code":"pip install AMR # Ubuntu / Debian sudo apt install r-base # Fedora: sudo dnf install R # CentOS/RHEL sudo yum install R brew install r"},{"path":[]},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"cleaning-taxonomy","dir":"Articles","previous_headings":"Examples of Usage","what":"Cleaning Taxonomy","title":"AMR for Python","text":"’s example demonstrates clean microorganism drug names using AMR Python package:","code":"import pandas as pd import AMR # Sample data data = { \"MOs\": ['E. coli', 'ESCCOL', 'esco', 'Esche coli'], \"Drug\": ['Cipro', 'CIP', 'J01MA02', 'Ciproxin'] } df = pd.DataFrame(data) # Use AMR functions to clean microorganism and drug names df['MO_clean'] = AMR.mo_name(df['MOs']) df['Drug_clean'] = AMR.ab_name(df['Drug']) # Display the results print(df)"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"explanation","dir":"Articles","previous_headings":"Examples of Usage > Cleaning Taxonomy","what":"Explanation","title":"AMR for Python","text":"mo_name: function standardises microorganism names. , different variations Escherichia coli (“E. coli”, “ESCCOL”, “esco”, “Esche coli”) converted correct, standardised form, “Escherichia coli”. ab_name: Similarly, function standardises antimicrobial names. different representations ciprofloxacin (e.g., “Cipro”, “CIP”, “J01MA02”, “Ciproxin”) converted standard name, “Ciprofloxacin”.","code":""},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"calculating-amr","dir":"Articles","previous_headings":"Examples of Usage","what":"Calculating AMR","title":"AMR for Python","text":"","code":"import AMR import pandas as pd df = AMR.example_isolates result = AMR.resistance(df[\"AMX\"]) print(result) [0.59555556]"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"generating-antibiograms","dir":"Articles","previous_headings":"Examples of Usage","what":"Generating Antibiograms","title":"AMR for Python","text":"One core functions AMR package generating antibiogram, table summarises antimicrobial susceptibility bacterial isolates. ’s can generate antibiogram Python: example, generate antibiogram selecting various antibiotics.","code":"result2a = AMR.antibiogram(df[[\"mo\", \"AMX\", \"CIP\", \"TZP\"]]) print(result2a) result2b = AMR.antibiogram(df[[\"mo\", \"AMX\", \"CIP\", \"TZP\"]], mo_transform = \"gramstain\") print(result2b)"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"taxonomic-data-sets-now-in-python","dir":"Articles","previous_headings":"Examples of Usage","what":"Taxonomic Data Sets Now in Python!","title":"AMR for Python","text":"Python user, might like important data sets AMR R package, microorganisms, antimicrobials, clinical_breakpoints, example_isolates, now available regular Python data frames:","code":"AMR.microorganisms AMR.antimicrobials"},{"path":"https://amr-for-r.org/articles/AMR_for_Python.html","id":"conclusion","dir":"Articles","previous_headings":"","what":"Conclusion","title":"AMR for Python","text":"AMR Python package, Python users can now effortlessly call R functions AMR R package. eliminates need complex rpy2 configurations provides clean, easy--use interface antimicrobial resistance analysis. examples provided demonstrate can applied typical workflows, standardising microorganism antimicrobial names calculating resistance. just running import AMR, users can seamlessly integrate robust features R AMR package Python workflows. Whether ’re cleaning data analysing resistance patterns, AMR Python package makes easy work AMR data Python.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"example-1-using-antimicrobial-selectors","dir":"Articles","previous_headings":"","what":"Example 1: Using Antimicrobial Selectors","title":"AMR with tidymodels","text":"leveraging power tidymodels AMR package, ’ll build reproducible machine learning workflow predict Gramstain microorganism two important antibiotic classes: aminoglycosides beta-lactams.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"objective","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Objective","title":"AMR with tidymodels","text":"goal build predictive model using tidymodels framework determine Gramstain microorganism based microbial data. : Preprocess data using selector functions aminoglycosides() betalactams(). Define logistic regression model prediction. Use structured tidymodels workflow preprocess, train, evaluate model.","code":""},{"path":"https://amr-for-r.org/articles/AMR_with_tidymodels.html","id":"data-preparation","dir":"Articles","previous_headings":"Example 1: Using Antimicrobial Selectors","what":"Data Preparation","title":"AMR with tidymodels","text":"begin loading required libraries preparing example_isolates dataset AMR package. Prepare data: Explanation: aminoglycosides() betalactams() dynamically select columns antimicrobials classes. drop_na() ensures model receives complete cases training.","code":"# Load required libraries library(AMR) # For AMR data analysis library(tidymodels) # For machine learning workflows, and data manipulation (dplyr, tidyr, ...) # Your data could look like this: example_isolates #> # A tibble: 2,000 × 46 #> date patient age gender ward mo PEN OXA FLC AMX #> #> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA #> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R #> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA #> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA #> # ℹ 1,990 more rows #> # ℹ 36 more variables: AMC , AMP , TZP , CZO , FEP , #> # CXM , FOX , CTX , CAZ , CRO , GEN , #> # TOB , AMK , KAN , TMP , SXT , NIT , #> # FOS , LNZ , CIP , MFX , VAN , TEC , #> # TCY , TGC , DOX , ERY , CLI , AZM , #> # IPM , MEM , MTR , CHL