mirror of
https://github.com/msberends/AMR.git
synced 2025-01-24 23:44:35 +01:00
(v1.3.0.9030) matching score update
This commit is contained in:
parent
9667c2994f
commit
050a9a04fb
@ -1,6 +1,6 @@
|
||||
Package: AMR
|
||||
Version: 1.3.0.9029
|
||||
Date: 2020-09-25
|
||||
Version: 1.3.0.9030
|
||||
Date: 2020-09-26
|
||||
Title: Antimicrobial Resistance Analysis
|
||||
Authors@R: c(
|
||||
person(role = c("aut", "cre"),
|
||||
|
4
NEWS.md
4
NEWS.md
@ -1,5 +1,5 @@
|
||||
# AMR 1.3.0.9029
|
||||
## <small>Last updated: 25 September 2020</small>
|
||||
# AMR 1.3.0.9030
|
||||
## <small>Last updated: 26 September 2020</small>
|
||||
|
||||
Note: some changes in this version were suggested by anonymous reviewers from the journal we submitted our manuscipt to. We are those reviewers very grateful for going through our code so thoroughly!
|
||||
|
||||
|
@ -48,18 +48,6 @@ pm_left_join <- function(x, y, by = NULL, suffix = c(".x", ".y")) {
|
||||
rownames(merged) <- NULL
|
||||
merged
|
||||
}
|
||||
# pm_filter_join_worker <- function(x, y, by = NULL, type = c("anti", "semi")) {
|
||||
# type <- match.arg(type, choices = c("anti", "semi"), several.ok = FALSE)
|
||||
# if (is.null(by)) {
|
||||
# by <- intersect(names(x), names(y))
|
||||
# join_message(by)
|
||||
# }
|
||||
# rows <- interaction(x[, by]) %in% interaction(y[, by])
|
||||
# if (type == "anti") rows <- !rows
|
||||
# res <- x[rows, , drop = FALSE]
|
||||
# rownames(res) <- NULL
|
||||
# res
|
||||
# }
|
||||
|
||||
quick_case_when <- function(...) {
|
||||
vectors <- list(...)
|
||||
|
@ -27,12 +27,12 @@
|
||||
#' @name join
|
||||
#' @aliases join inner_join
|
||||
#' @param x existing table to join, or character vector
|
||||
#' @param by a variable to join by - if left empty will search for a column with class [`mo`] (created with [as.mo()]) or will be `"mo"` if that column name exists in `x`, could otherwise be a column name of `x` with values that exist in `microorganisms$mo` (like `by = "bacteria_id"`), or another column in [microorganisms] (but then it should be named, like `by = c("my_genus_species" = "fullname")`)
|
||||
#' @param by a variable to join by - if left empty will search for a column with class [`mo`] (created with [as.mo()]) or will be `"mo"` if that column name exists in `x`, could otherwise be a column name of `x` with values that exist in `microorganisms$mo` (like `by = "bacteria_id"`), or another column in [microorganisms] (but then it should be named, like `by = c("bacteria_id" = "fullname")`)
|
||||
#' @param suffix if there are non-joined duplicate variables in `x` and `y`, these suffixes will be added to the output to disambiguate them. Should be a character vector of length 2.
|
||||
#' @param ... ignored
|
||||
#' @details **Note:** As opposed to the `join()` functions of `dplyr`, [character] vectors are supported and at default existing columns will get a suffix `"2"` and the newly joined columns will not get a suffix.
|
||||
#'
|
||||
#' These functions rely on [merge()], a base R function to do joins.
|
||||
#' If the `dplyr` package is installed, their join functions will be used. Otherwise, the much slower [merge()] function from base R will be used.
|
||||
#' @inheritSection AMR Read more on our website!
|
||||
#' @export
|
||||
#' @examples
|
||||
@ -60,9 +60,17 @@ inner_join_microorganisms <- function(x, by = NULL, suffix = c("2", ""), ...) {
|
||||
x_class <- get_prejoined_class(x)
|
||||
x <- checked$x
|
||||
by <- checked$by
|
||||
join <- suppressWarnings(
|
||||
pm_inner_join(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
# use dplyr if available - it's much faster
|
||||
dplyr_inner <- import_fn("inner_join", "dplyr", error_on_fail = FALSE)
|
||||
if (!is.null(dplyr_inner)) {
|
||||
join <- suppressWarnings(
|
||||
dplyr_inner(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
} else {
|
||||
join <- suppressWarnings(
|
||||
pm_inner_join(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
}
|
||||
if (NROW(join) > NROW(x)) {
|
||||
warning("The newly joined tbl contains ", nrow(join) - nrow(x), " rows more that its original.")
|
||||
}
|
||||
@ -79,9 +87,17 @@ left_join_microorganisms <- function(x, by = NULL, suffix = c("2", ""), ...) {
|
||||
x_class <- get_prejoined_class(x)
|
||||
x <- checked$x
|
||||
by <- checked$by
|
||||
join <- suppressWarnings(
|
||||
pm_left_join(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
# use dplyr if available - it's much faster
|
||||
dplyr_left <- import_fn("left_join", "dplyr", error_on_fail = FALSE)
|
||||
if (!is.null(dplyr_left)) {
|
||||
join <- suppressWarnings(
|
||||
dplyr_left(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
} else {
|
||||
join <- suppressWarnings(
|
||||
pm_left_join(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
}
|
||||
if (NROW(join) > NROW(x)) {
|
||||
warning("The newly joined tbl contains ", nrow(join) - nrow(x), " rows more that its original.")
|
||||
}
|
||||
@ -98,9 +114,17 @@ right_join_microorganisms <- function(x, by = NULL, suffix = c("2", ""), ...) {
|
||||
x_class <- get_prejoined_class(x)
|
||||
x <- checked$x
|
||||
by <- checked$by
|
||||
join <- suppressWarnings(
|
||||
pm_right_join(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
# use dplyr if available - it's much faster
|
||||
dplyr_right <- import_fn("right_join", "dplyr", error_on_fail = FALSE)
|
||||
if (!is.null(dplyr_right)) {
|
||||
join <- suppressWarnings(
|
||||
dplyr_right(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
} else {
|
||||
join <- suppressWarnings(
|
||||
pm_right_join(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
}
|
||||
if (NROW(join) > NROW(x)) {
|
||||
warning("The newly joined tbl contains ", nrow(join) - nrow(x), " rows more that its original.")
|
||||
}
|
||||
@ -117,9 +141,17 @@ full_join_microorganisms <- function(x, by = NULL, suffix = c("2", ""), ...) {
|
||||
x_class <- get_prejoined_class(x)
|
||||
x <- checked$x
|
||||
by <- checked$by
|
||||
join <- suppressWarnings(
|
||||
pm_full_join(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
# use dplyr if available - it's much faster
|
||||
dplyr_full <- import_fn("full_join", "dplyr", error_on_fail = FALSE)
|
||||
if (!is.null(dplyr_full)) {
|
||||
join <- suppressWarnings(
|
||||
dplyr_full(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
} else {
|
||||
join <- suppressWarnings(
|
||||
pm_full_join(x = x, y = microorganisms, by = by, suffix = suffix, ...)
|
||||
)
|
||||
}
|
||||
if (NROW(join) > NROW(x)) {
|
||||
warning("The newly joined tbl contains ", nrow(join) - nrow(x), " rows more that its original.")
|
||||
}
|
||||
@ -136,9 +168,17 @@ semi_join_microorganisms <- function(x, by = NULL, ...) {
|
||||
checked <- joins_check_df(x, by)
|
||||
x <- checked$x
|
||||
by <- checked$by
|
||||
join <- suppressWarnings(
|
||||
pm_semi_join(x = x, y = microorganisms, by = by, ...)
|
||||
)
|
||||
# use dplyr if available - it's much faster
|
||||
dplyr_semi <- import_fn("semi_join", "dplyr", error_on_fail = FALSE)
|
||||
if (!is.null(dplyr_semi)) {
|
||||
join <- suppressWarnings(
|
||||
dplyr_semi(x = x, y = microorganisms, by = by,...)
|
||||
)
|
||||
} else {
|
||||
join <- suppressWarnings(
|
||||
pm_semi_join(x = x, y = microorganisms, by = by,...)
|
||||
)
|
||||
}
|
||||
class(join) <- x_class
|
||||
join
|
||||
}
|
||||
@ -152,9 +192,17 @@ anti_join_microorganisms <- function(x, by = NULL, ...) {
|
||||
x_class <- get_prejoined_class(x)
|
||||
x <- checked$x
|
||||
by <- checked$by
|
||||
join <- suppressWarnings(
|
||||
pm_anti_join(x = x, y = microorganisms, by = by, ...)
|
||||
)
|
||||
# use dplyr if available - it's much faster
|
||||
dplyr_anti <- import_fn("anti_join", "dplyr", error_on_fail = FALSE)
|
||||
if (!is.null(dplyr_anti)) {
|
||||
join <- suppressWarnings(
|
||||
dplyr_anti(x = x, y = microorganisms, by = by,...)
|
||||
)
|
||||
} else {
|
||||
join <- suppressWarnings(
|
||||
pm_anti_join(x = x, y = microorganisms, by = by,...)
|
||||
)
|
||||
}
|
||||
class(join) <- x_class
|
||||
join
|
||||
}
|
||||
|
32
R/mo.R
32
R/mo.R
@ -101,20 +101,7 @@
|
||||
#'
|
||||
#' Group 3 (least prevalent microorganisms) consists of all other microorganisms. This group contains microorganisms most probably not found in humans.
|
||||
#'
|
||||
#' ## Background on matching scores
|
||||
#' With ambiguous user input, the returned results are chosen based on their matching score using [mo_matching_score()]. This matching score is based on four parameters:
|
||||
#'
|
||||
#' 1. The prevalence \eqn{P} is categorised into group 1, 2 and 3 as stated above;
|
||||
#' 2. A kingdom index \eqn{K} is set as follows: Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, and all others = 5;
|
||||
#' 3. The level of uncertainty \eqn{U} needed to get to the result, as stated above (1 to 3);
|
||||
#' 4. The [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
|
||||
#'
|
||||
#' \deqn{L' = 1 - \frac{0.5L}{F}}{L' = 1 - ((0.5 * L) / F)}
|
||||
#'
|
||||
#' The final matching score \eqn{M} is calculated as:
|
||||
#' \deqn{M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}}{M = L' * (1 / (P * K * U)) = (F - 0.5L) / (F * P * K * U)}
|
||||
#'
|
||||
#' All matches are sorted descending on their matching score and for all user input values, the top match will be returned.
|
||||
#' @inheritSection mo_matching_score Matching score for microorganisms
|
||||
#' @inheritSection catalogue_of_life Catalogue of Life
|
||||
# (source as a section here, so it can be inherited by other man pages:)
|
||||
#' @section Source:
|
||||
@ -331,8 +318,7 @@ exec_as.mo <- function(x,
|
||||
if (NROW(res_df) > 1 & uncertainty != -1) {
|
||||
# sort the findings on matching score
|
||||
scores <- mo_matching_score(x = input,
|
||||
fullname = res_df[, "fullname", drop = TRUE],
|
||||
uncertainty = uncertainty)
|
||||
fullname = res_df[, "fullname", drop = TRUE])
|
||||
res_df <- res_df[order(scores, decreasing = TRUE), , drop = FALSE]
|
||||
}
|
||||
res <- as.character(res_df[, column, drop = TRUE])
|
||||
@ -1779,7 +1765,7 @@ print.mo_uncertainties <- function(x, ...) {
|
||||
if (NROW(x) == 0) {
|
||||
return(NULL)
|
||||
}
|
||||
cat(font_blue(strwrap(c("Matching scores are based on human pathogenic prevalence and the resemblance between the input and the full taxonomic name. Furthermore, an indication is given about the probability of the match - the more transformations are needed for coercion, the more improbable the result.")), collapse = "\n"))
|
||||
cat(font_blue(strwrap(c("Matching scores are based on human pathogenic prevalence and the resemblance between the input and the full taxonomic name. Furthermore, an indication is given about the certainty of the match - the more transformations are needed for coercion, the less certain the result.")), collapse = "\n"))
|
||||
cat("\n")
|
||||
|
||||
msg <- ""
|
||||
@ -1787,8 +1773,7 @@ print.mo_uncertainties <- function(x, ...) {
|
||||
if (x[i, ]$candidates != "") {
|
||||
candidates <- unlist(strsplit(x[i, ]$candidates, ", ", fixed = TRUE))
|
||||
scores <- mo_matching_score(x = x[i, ]$input,
|
||||
fullname = candidates,
|
||||
uncertainty = x[i, ]$uncertainty)
|
||||
fullname = candidates)
|
||||
# sort on descending scores
|
||||
candidates <- candidates[order(1 - scores)]
|
||||
n_candidates <- length(candidates)
|
||||
@ -1802,11 +1787,11 @@ print.mo_uncertainties <- function(x, ...) {
|
||||
candidates <- ""
|
||||
}
|
||||
if (x[i, ]$uncertainty == 1) {
|
||||
uncertainty_interpretation <- font_green("* MOST PROBABLE *")
|
||||
uncertainty_interpretation <- font_green("* very certain *")
|
||||
} else if (x[i, ]$uncertainty == 1) {
|
||||
uncertainty_interpretation <- font_yellow("* PROBABLE *")
|
||||
uncertainty_interpretation <- font_yellow("* certain *")
|
||||
} else {
|
||||
uncertainty_interpretation <- font_red("* IMPROBABLE *")
|
||||
uncertainty_interpretation <- font_red("* not certain *")
|
||||
}
|
||||
msg <- paste(msg,
|
||||
paste0('"', x[i, ]$input, '" -> ',
|
||||
@ -1814,8 +1799,7 @@ print.mo_uncertainties <- function(x, ...) {
|
||||
ifelse(!is.na(x[i, ]$renamed_to), paste(", renamed to", font_italic(x[i, ]$renamed_to)), ""),
|
||||
" (", x[i, ]$mo,
|
||||
", matching score = ", trimws(percentage(mo_matching_score(x = x[i, ]$input,
|
||||
fullname = x[i, ]$fullname,
|
||||
uncertainty = x[i, ]$uncertainty),
|
||||
fullname = x[i, ]$fullname),
|
||||
digits = 1)),
|
||||
") "),
|
||||
uncertainty_interpretation,
|
||||
|
@ -23,50 +23,53 @@
|
||||
#'
|
||||
#' This helper function is used by [as.mo()] to determine the most probable match of taxonomic records, based on user input.
|
||||
#' @param x Any user input value(s)
|
||||
#' @param fullname A full taxonomic name, that exists in [`microorganisms$fullname`][microorganisms]
|
||||
#' @param n A full taxonomic name, that exists in [`microorganisms$fullname`][microorganisms]
|
||||
#' @param uncertainty The level of uncertainty set in [as.mo()], see `allow_uncertain` in that function (here, it defaults to 1, but is automatically determined in [as.mo()] based on the number of transformations needed to get to a result)
|
||||
#' @details The matching score is based on four parameters:
|
||||
#' @section Matching score for microorganisms:
|
||||
#' With ambiguous user input in [as.mo()] and all the [`mo_*`][mo_property()] functions, the returned results are chosen based on their matching score using [mo_matching_score()]. This matching score \eqn{m} is calculated as:
|
||||
#'
|
||||
#' 1. A human pathogenic prevalence \eqn{P}, that is categorised into group 1, 2 and 3 (see [as.mo()]);
|
||||
#' 2. A kingdom index \eqn{K} is set as follows: Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, and all others = 5;
|
||||
#' 3. The level of uncertainty \eqn{U} that is needed to get to a result (1 to 3, see [as.mo()]);
|
||||
#' 4. The [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
|
||||
#'
|
||||
#' \deqn{L' = 1 - \frac{0.5L}{F}}{L' = 1 - ((0.5 * L) / F)}
|
||||
#'
|
||||
#' The final matching score \eqn{M} is calculated as:
|
||||
#' \deqn{M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}}{M = L' * (1 / (P * K * U)) = (F - 0.5L) / (F * P * K * U)}
|
||||
#' \deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \times \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} p k}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p * k )}
|
||||
#'
|
||||
#' where:
|
||||
#'
|
||||
#' * \eqn{x} is the user input;
|
||||
#' * \eqn{n} is a taxonomic name (genus, species and subspecies);
|
||||
#' * \eqn{l_{n}}{l_n} is the length of the taxonomic name;
|
||||
#' * \eqn{\operatorname{lev}}{lev} is the [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) function;
|
||||
#' * \eqn{p} is the human pathogenic prevalence, categorised into group \eqn{1}, \eqn{2} and \eqn{3} (see *Details* in `?as.mo`), meaning that \eqn{p = \{1, 2 , 3\}}{p = {1, 2, 3}};
|
||||
#' * \eqn{k} is the kingdom index, set as follows: Bacteria = \eqn{1}, Fungi = \eqn{2}, Protozoa = \eqn{3}, Archaea = \eqn{4}, and all others = \eqn{5}, meaning that \eqn{k = \{1, 2 , 3, 4, 5\}}{k = {1, 2, 3, 4, 5}}.
|
||||
#'
|
||||
#' All matches are sorted descending on their matching score and for all user input values, the top match will be returned.
|
||||
#' @export
|
||||
#' @examples
|
||||
#' as.mo("E. coli")
|
||||
#' mo_uncertainties()
|
||||
mo_matching_score <- function(x, fullname, uncertainty = 1) {
|
||||
# fullname is always a taxonomically valid full name
|
||||
#'
|
||||
#' mo_matching_score("E. coli", "Escherichia coli")
|
||||
mo_matching_score <- function(x, n) {
|
||||
# n is always a taxonomically valid full name
|
||||
levenshtein <- double(length = length(x))
|
||||
if (length(fullname) == 1) {
|
||||
fullname <- rep(fullname, length(x))
|
||||
if (length(n) == 1) {
|
||||
n <- rep(n, length(x))
|
||||
}
|
||||
if (length(x) == 1) {
|
||||
x <- rep(x, length(fullname))
|
||||
x <- rep(x, length(n))
|
||||
}
|
||||
for (i in seq_len(length(x))) {
|
||||
# determine Levenshtein distance, but maximise to nchar of fullname
|
||||
levenshtein[i] <- min(as.double(utils::adist(x[i], fullname[i], ignore.case = FALSE)),
|
||||
nchar(fullname[i]))
|
||||
# determine Levenshtein distance, but maximise to nchar of n
|
||||
levenshtein[i] <- min(as.double(utils::adist(x[i], n[i], ignore.case = FALSE)),
|
||||
nchar(n[i]))
|
||||
}
|
||||
|
||||
# F = length of fullname
|
||||
var_F <- nchar(fullname)
|
||||
var_F <- nchar(n)
|
||||
# L = modified Levenshtein distance
|
||||
var_L <- levenshtein
|
||||
# P = Prevalence (1 to 3)
|
||||
var_P <- MO_lookup[match(fullname, MO_lookup$fullname), "prevalence", drop = TRUE]
|
||||
var_P <- MO_lookup[match(n, MO_lookup$fullname), "prevalence", drop = TRUE]
|
||||
# K = kingdom index (Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5)
|
||||
var_K <- MO_lookup[match(fullname, MO_lookup$fullname), "kingdom_index", drop = TRUE]
|
||||
# U = uncertainty level (1 to 3), as per as.mo()
|
||||
var_U <- uncertainty
|
||||
var_K <- MO_lookup[match(n, MO_lookup$fullname), "kingdom_index", drop = TRUE]
|
||||
|
||||
# matching score:
|
||||
(var_F - 0.5 * var_L) / (var_F * var_P * var_K * var_U)
|
||||
(var_F - 0.5 * var_L) / (var_F * var_P * var_K)
|
||||
}
|
||||
|
@ -42,6 +42,7 @@
|
||||
#' All output will be [translate]d where possible.
|
||||
#'
|
||||
#' The function [mo_url()] will return the direct URL to the online database entry, which also shows the scientific reference of the concerned species.
|
||||
#' @inheritSection mo_matching_score Matching score for microorganisms
|
||||
#' @inheritSection catalogue_of_life Catalogue of Life
|
||||
#' @inheritSection as.mo Source
|
||||
#' @rdname mo_property
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="https://msberends.github.io/AMR/index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -43,7 +43,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -236,13 +236,13 @@
|
||||
<small>Source: <a href='https://github.com/msberends/AMR/blob/master/NEWS.md'><code>NEWS.md</code></a></small>
|
||||
</div>
|
||||
|
||||
<div id="amr-1309029" class="section level1">
|
||||
<h1 class="page-header" data-toc-text="1.3.0.9029">
|
||||
<a href="#amr-1309029" class="anchor"></a>AMR 1.3.0.9029<small> Unreleased </small>
|
||||
<div id="amr-1309030" class="section level1">
|
||||
<h1 class="page-header" data-toc-text="1.3.0.9030">
|
||||
<a href="#amr-1309030" class="anchor"></a>AMR 1.3.0.9030<small> Unreleased </small>
|
||||
</h1>
|
||||
<div id="last-updated-25-september-2020" class="section level2">
|
||||
<div id="last-updated-26-september-2020" class="section level2">
|
||||
<h2 class="hasAnchor">
|
||||
<a href="#last-updated-25-september-2020" class="anchor"></a><small>Last updated: 25 September 2020</small>
|
||||
<a href="#last-updated-26-september-2020" class="anchor"></a><small>Last updated: 26 September 2020</small>
|
||||
</h2>
|
||||
<p>Note: some changes in this version were suggested by anonymous reviewers from the journal we submitted our manuscipt to. We are those reviewers very grateful for going through our code so thoroughly!</p>
|
||||
<div id="new" class="section level3">
|
||||
|
@ -2,7 +2,7 @@ pandoc: 2.7.3
|
||||
pkgdown: 1.5.1.9000
|
||||
pkgdown_sha: eae56f08694abebf93cdfc0dd8e9ede06d8c815f
|
||||
articles: []
|
||||
last_built: 2020-09-25T12:44Z
|
||||
last_built: 2020-09-26T14:25Z
|
||||
urls:
|
||||
reference: https://msberends.github.io/AMR/reference
|
||||
article: https://msberends.github.io/AMR/articles
|
||||
|
@ -82,7 +82,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9028</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -366,21 +366,6 @@
|
||||
<p>Group 2 consists of all microorganisms where the taxonomic phylum is Proteobacteria, Firmicutes, Actinobacteria or Sarcomastigophora, or where the taxonomic genus is <em>Aspergillus</em>, <em>Bacteroides</em>, <em>Candida</em>, <em>Capnocytophaga</em>, <em>Chryseobacterium</em>, <em>Cryptococcus</em>, <em>Elisabethkingia</em>, <em>Flavobacterium</em>, <em>Fusobacterium</em>, <em>Giardia</em>, <em>Leptotrichia</em>, <em>Mycoplasma</em>, <em>Prevotella</em>, <em>Rhodotorula</em>, <em>Treponema</em>, <em>Trichophyton</em> or <em>Ureaplasma</em>. This group consequently contains all less common and rare human pathogens.</p>
|
||||
<p>Group 3 (least prevalent microorganisms) consists of all other microorganisms. This group contains microorganisms most probably not found in humans.</p>
|
||||
|
||||
<h3>Background on matching scores</h3>
|
||||
|
||||
|
||||
<p>With ambiguous user input, the returned results are chosen based on their matching score using <code><a href='mo_matching_score.html'>mo_matching_score()</a></code>. This matching score is based on four parameters:</p><ol>
|
||||
<li><p>The prevalence \(P\) is categorised into group 1, 2 and 3 as stated above;</p></li>
|
||||
<li><p>A kingdom index \(K\) is set as follows: Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, and all others = 5;</p></li>
|
||||
<li><p>The level of uncertainty \(U\) needed to get to the result, as stated above (1 to 3);</p></li>
|
||||
<li><p>The <a href='https://en.wikipedia.org/wiki/Levenshtein_distance'>Levenshtein distance</a> \(L\) is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \(L'\) based on the text length of the full name \(F\) is calculated as:</p></li>
|
||||
</ol>
|
||||
|
||||
<p>$$L' = 1 - \frac{0.5L}{F}$$</p>
|
||||
<p>The final matching score \(M\) is calculated as:
|
||||
$$M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}$$</p>
|
||||
<p>All matches are sorted descending on their matching score and for all user input values, the top match will be returned.</p>
|
||||
|
||||
<h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2>
|
||||
|
||||
|
||||
@ -399,6 +384,22 @@ $$M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}$$</p>
|
||||
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br />
|
||||
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p>
|
||||
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
|
||||
<h2 class="hasAnchor" id="matching-score-for-microorganisms"><a class="anchor" href="#matching-score-for-microorganisms"></a>Matching score for microorganisms</h2>
|
||||
|
||||
|
||||
|
||||
<p>With ambiguous user input in <code>as.mo()</code> and all the <code><a href='mo_property.html'>mo_*</a></code> functions, the returned results are chosen based on their matching score using <code><a href='mo_matching_score.html'>mo_matching_score()</a></code>. This matching score \(m\) is calculated as:</p>
|
||||
<p>$$m_{(x, n)} = \frac{l_{n} - 0.5 \times \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} p k}$$</p>
|
||||
<p>where:</p><ul>
|
||||
<li><p>\(x\) is the user input;</p></li>
|
||||
<li><p>\(n\) is a taxonomic name (genus, species and subspecies);</p></li>
|
||||
<li><p>\(l_{n}\) is the length of the taxonomic name;</p></li>
|
||||
<li><p>\(\operatorname{lev}\) is the <a href='https://en.wikipedia.org/wiki/Levenshtein_distance'>Levenshtein distance</a> function;</p></li>
|
||||
<li><p>\(p\) is the human pathogenic prevalence, categorised into group \(1\), \(2\) and \(3\) (see <em>Details</em> in <code>?as.mo</code>), meaning that \(p = \{1, 2 , 3\}\);</p></li>
|
||||
<li><p>\(k\) is the kingdom index, set as follows: Bacteria = \(1\), Fungi = \(2\), Protozoa = \(3\), Archaea = \(4\), and all others = \(5\), meaning that \(k = \{1, 2 , 3, 4, 5\}\).</p></li>
|
||||
</ul>
|
||||
|
||||
<p>All matches are sorted descending on their matching score and for all user input values, the top match will be returned.</p>
|
||||
<h2 class="hasAnchor" id="catalogue-of-life"><a class="anchor" href="#catalogue-of-life"></a>Catalogue of Life</h2>
|
||||
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
@ -82,7 +82,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9026</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -263,7 +263,7 @@
|
||||
</tr>
|
||||
<tr>
|
||||
<th>by</th>
|
||||
<td><p>a variable to join by - if left empty will search for a column with class <code><a href='as.mo.html'>mo</a></code> (created with <code><a href='as.mo.html'>as.mo()</a></code>) or will be <code>"mo"</code> if that column name exists in <code>x</code>, could otherwise be a column name of <code>x</code> with values that exist in <code>microorganisms$mo</code> (like <code>by = "bacteria_id"</code>), or another column in <a href='microorganisms.html'>microorganisms</a> (but then it should be named, like <code>by = c("my_genus_species" = "fullname")</code>)</p></td>
|
||||
<td><p>a variable to join by - if left empty will search for a column with class <code><a href='as.mo.html'>mo</a></code> (created with <code><a href='as.mo.html'>as.mo()</a></code>) or will be <code>"mo"</code> if that column name exists in <code>x</code>, could otherwise be a column name of <code>x</code> with values that exist in <code>microorganisms$mo</code> (like <code>by = "bacteria_id"</code>), or another column in <a href='microorganisms.html'>microorganisms</a> (but then it should be named, like <code>by = c("bacteria_id" = "fullname")</code>)</p></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>suffix</th>
|
||||
@ -278,7 +278,7 @@
|
||||
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
|
||||
|
||||
<p><strong>Note:</strong> As opposed to the <code>join()</code> functions of <code>dplyr</code>, <a href='https://rdrr.io/r/base/character.html'>character</a> vectors are supported and at default existing columns will get a suffix <code>"2"</code> and the newly joined columns will not get a suffix.</p>
|
||||
<p>These functions rely on <code><a href='https://rdrr.io/r/base/merge.html'>merge()</a></code>, a base R function to do joins.</p>
|
||||
<p>If the <code>dplyr</code> package is installed, their join functions will be used. Otherwise, the much slower <code><a href='https://rdrr.io/r/base/merge.html'>merge()</a></code> function from base R will be used.</p>
|
||||
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable lifecycle</h2>
|
||||
|
||||
|
||||
|
@ -82,7 +82,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9028</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -242,7 +242,7 @@
|
||||
<p>This helper function is used by <code><a href='as.mo.html'>as.mo()</a></code> to determine the most probable match of taxonomic records, based on user input.</p>
|
||||
</div>
|
||||
|
||||
<pre class="usage"><span class='fu'>mo_matching_score</span>(<span class='kw'>x</span>, <span class='kw'>fullname</span>, uncertainty = <span class='fl'>1</span>)</pre>
|
||||
<pre class="usage"><span class='fu'>mo_matching_score</span>(<span class='kw'>x</span>, <span class='kw'>n</span>)</pre>
|
||||
|
||||
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
|
||||
<table class="ref-arguments">
|
||||
@ -252,7 +252,7 @@
|
||||
<td><p>Any user input value(s)</p></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>fullname</th>
|
||||
<th>n</th>
|
||||
<td><p>A full taxonomic name, that exists in <code><a href='microorganisms.html'>microorganisms$fullname</a></code></p></td>
|
||||
</tr>
|
||||
<tr>
|
||||
@ -261,22 +261,28 @@
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
|
||||
<h2 class="hasAnchor" id="matching-score-for-microorganisms"><a class="anchor" href="#matching-score-for-microorganisms"></a>Matching score for microorganisms</h2>
|
||||
|
||||
<p>The matching score is based on four parameters:</p><ol>
|
||||
<li><p>A human pathogenic prevalence \(P\), that is categorised into group 1, 2 and 3 (see <code><a href='as.mo.html'>as.mo()</a></code>);</p></li>
|
||||
<li><p>A kingdom index \(K\) is set as follows: Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, and all others = 5;</p></li>
|
||||
<li><p>The level of uncertainty \(U\) that is needed to get to a result (1 to 3, see <code><a href='as.mo.html'>as.mo()</a></code>);</p></li>
|
||||
<li><p>The <a href='https://en.wikipedia.org/wiki/Levenshtein_distance'>Levenshtein distance</a> \(L\) is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \(L'\) based on the text length of the full name \(F\) is calculated as:</p></li>
|
||||
</ol>
|
||||
|
||||
|
||||
<p>$$L' = 1 - \frac{0.5L}{F}$$</p>
|
||||
<p>The final matching score \(M\) is calculated as:
|
||||
$$M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}$$</p>
|
||||
<p>With ambiguous user input in <code><a href='as.mo.html'>as.mo()</a></code> and all the <code><a href='mo_property.html'>mo_*</a></code> functions, the returned results are chosen based on their matching score using <code>mo_matching_score()</code>. This matching score \(m\) is calculated as:</p>
|
||||
<p>$$m_{(x, n)} = \frac{l_{n} - 0.5 \times \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} p k}$$</p>
|
||||
<p>where:</p><ul>
|
||||
<li><p>\(x\) is the user input;</p></li>
|
||||
<li><p>\(n\) is a taxonomic name (genus, species and subspecies);</p></li>
|
||||
<li><p>\(l_{n}\) is the length of the taxonomic name;</p></li>
|
||||
<li><p>\(\operatorname{lev}\) is the <a href='https://en.wikipedia.org/wiki/Levenshtein_distance'>Levenshtein distance</a> function;</p></li>
|
||||
<li><p>\(p\) is the human pathogenic prevalence, categorised into group \(1\), \(2\) and \(3\) (see <em>Details</em> in <code><a href='as.mo.html'>?as.mo</a></code>), meaning that \(p = \{1, 2 , 3\}\);</p></li>
|
||||
<li><p>\(k\) is the kingdom index, set as follows: Bacteria = \(1\), Fungi = \(2\), Protozoa = \(3\), Archaea = \(4\), and all others = \(5\), meaning that \(k = \{1, 2 , 3, 4, 5\}\).</p></li>
|
||||
</ul>
|
||||
|
||||
<p>All matches are sorted descending on their matching score and for all user input values, the top match will be returned.</p>
|
||||
|
||||
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
|
||||
<pre class="examples"><span class='fu'><a href='as.mo.html'>as.mo</a></span>(<span class='st'>"E. coli"</span>)
|
||||
<span class='fu'><a href='as.mo.html'>mo_uncertainties</a></span>()
|
||||
|
||||
<span class='fu'>mo_matching_score</span>(<span class='st'>"E. coli"</span>, <span class='st'>"Escherichia coli"</span>)
|
||||
</pre>
|
||||
</div>
|
||||
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
|
||||
|
@ -82,7 +82,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="../index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9026</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
@ -346,6 +346,22 @@
|
||||
<p><img src='figures/lifecycle_stable.svg' style=margin-bottom:5px /> <br />
|
||||
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</strong>. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.</p>
|
||||
<p>If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.</p>
|
||||
<h2 class="hasAnchor" id="matching-score-for-microorganisms"><a class="anchor" href="#matching-score-for-microorganisms"></a>Matching score for microorganisms</h2>
|
||||
|
||||
|
||||
|
||||
<p>With ambiguous user input in <code><a href='as.mo.html'>as.mo()</a></code> and all the <code>mo_*</code> functions, the returned results are chosen based on their matching score using <code><a href='mo_matching_score.html'>mo_matching_score()</a></code>. This matching score \(m\) is calculated as:</p>
|
||||
<p>$$m_{(x, n)} = \frac{l_{n} - 0.5 \times \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} p k}$$</p>
|
||||
<p>where:</p><ul>
|
||||
<li><p>\(x\) is the user input;</p></li>
|
||||
<li><p>\(n\) is a taxonomic name (genus, species and subspecies);</p></li>
|
||||
<li><p>\(l_{n}\) is the length of the taxonomic name;</p></li>
|
||||
<li><p>\(\operatorname{lev}\) is the <a href='https://en.wikipedia.org/wiki/Levenshtein_distance'>Levenshtein distance</a> function;</p></li>
|
||||
<li><p>\(p\) is the human pathogenic prevalence, categorised into group \(1\), \(2\) and \(3\) (see <em>Details</em> in <code><a href='as.mo.html'>?as.mo</a></code>), meaning that \(p = \{1, 2 , 3\}\);</p></li>
|
||||
<li><p>\(k\) is the kingdom index, set as follows: Bacteria = \(1\), Fungi = \(2\), Protozoa = \(3\), Archaea = \(4\), and all others = \(5\), meaning that \(k = \{1, 2 , 3, 4, 5\}\).</p></li>
|
||||
</ul>
|
||||
|
||||
<p>All matches are sorted descending on their matching score and for all user input values, the top match will be returned.</p>
|
||||
<h2 class="hasAnchor" id="catalogue-of-life"><a class="anchor" href="#catalogue-of-life"></a>Catalogue of Life</h2>
|
||||
|
||||
|
||||
|
@ -81,7 +81,7 @@
|
||||
</button>
|
||||
<span class="navbar-brand">
|
||||
<a class="navbar-link" href="index.html">AMR (for R)</a>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9029</span>
|
||||
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.3.0.9030</span>
|
||||
</span>
|
||||
</div>
|
||||
|
||||
|
37
man/as.mo.Rd
37
man/as.mo.Rd
@ -125,24 +125,6 @@ Group 2 consists of all microorganisms where the taxonomic phylum is Proteobacte
|
||||
|
||||
Group 3 (least prevalent microorganisms) consists of all other microorganisms. This group contains microorganisms most probably not found in humans.
|
||||
}
|
||||
|
||||
\subsection{Background on matching scores}{
|
||||
|
||||
With ambiguous user input, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score is based on four parameters:
|
||||
\enumerate{
|
||||
\item The prevalence \eqn{P} is categorised into group 1, 2 and 3 as stated above;
|
||||
\item A kingdom index \eqn{K} is set as follows: Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, and all others = 5;
|
||||
\item The level of uncertainty \eqn{U} needed to get to the result, as stated above (1 to 3);
|
||||
\item The \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
|
||||
}
|
||||
|
||||
\deqn{L' = 1 - \frac{0.5L}{F}}{L' = 1 - ((0.5 * L) / F)}
|
||||
|
||||
The final matching score \eqn{M} is calculated as:
|
||||
\deqn{M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}}{M = L' * (1 / (P * K * U)) = (F - 0.5L) / (F * P * K * U)}
|
||||
|
||||
All matches are sorted descending on their matching score and for all user input values, the top match will be returned.
|
||||
}
|
||||
}
|
||||
\section{Source}{
|
||||
|
||||
@ -162,6 +144,25 @@ The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stabl
|
||||
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
|
||||
}
|
||||
|
||||
\section{Matching score for microorganisms}{
|
||||
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m} is calculated as:
|
||||
|
||||
\deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \times \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} p k}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p * k )}
|
||||
|
||||
where:
|
||||
\itemize{
|
||||
\item \eqn{x} is the user input;
|
||||
\item \eqn{n} is a taxonomic name (genus, species and subspecies);
|
||||
\item \eqn{l_{n}}{l_n} is the length of the taxonomic name;
|
||||
\item \eqn{\operatorname{lev}}{lev} is the \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} function;
|
||||
\item \eqn{p} is the human pathogenic prevalence, categorised into group \eqn{1}, \eqn{2} and \eqn{3} (see \emph{Details} in \code{?as.mo}), meaning that \eqn{p = \{1, 2 , 3\}}{p = {1, 2, 3}};
|
||||
\item \eqn{k} is the kingdom index, set as follows: Bacteria = \eqn{1}, Fungi = \eqn{2}, Protozoa = \eqn{3}, Archaea = \eqn{4}, and all others = \eqn{5}, meaning that \eqn{k = \{1, 2 , 3, 4, 5\}}{k = {1, 2, 3, 4, 5}}.
|
||||
}
|
||||
|
||||
All matches are sorted descending on their matching score and for all user input values, the top match will be returned.
|
||||
}
|
||||
|
||||
\section{Catalogue of Life}{
|
||||
|
||||
\if{html}{\figure{logo_col.png}{options: height=40px style=margin-bottom:5px} \cr}
|
||||
|
@ -26,7 +26,7 @@ anti_join_microorganisms(x, by = NULL, ...)
|
||||
\arguments{
|
||||
\item{x}{existing table to join, or character vector}
|
||||
|
||||
\item{by}{a variable to join by - if left empty will search for a column with class \code{\link{mo}} (created with \code{\link[=as.mo]{as.mo()}}) or will be \code{"mo"} if that column name exists in \code{x}, could otherwise be a column name of \code{x} with values that exist in \code{microorganisms$mo} (like \code{by = "bacteria_id"}), or another column in \link{microorganisms} (but then it should be named, like \code{by = c("my_genus_species" = "fullname")})}
|
||||
\item{by}{a variable to join by - if left empty will search for a column with class \code{\link{mo}} (created with \code{\link[=as.mo]{as.mo()}}) or will be \code{"mo"} if that column name exists in \code{x}, could otherwise be a column name of \code{x} with values that exist in \code{microorganisms$mo} (like \code{by = "bacteria_id"}), or another column in \link{microorganisms} (but then it should be named, like \code{by = c("bacteria_id" = "fullname")})}
|
||||
|
||||
\item{suffix}{if there are non-joined duplicate variables in \code{x} and \code{y}, these suffixes will be added to the output to disambiguate them. Should be a character vector of length 2.}
|
||||
|
||||
@ -38,7 +38,7 @@ Join the data set \link{microorganisms} easily to an existing table or character
|
||||
\details{
|
||||
\strong{Note:} As opposed to the \code{join()} functions of \code{dplyr}, \link{character} vectors are supported and at default existing columns will get a suffix \code{"2"} and the newly joined columns will not get a suffix.
|
||||
|
||||
These functions rely on \code{\link[=merge]{merge()}}, a base R function to do joins.
|
||||
If the \code{dplyr} package is installed, their join functions will be used. Otherwise, the much slower \code{\link[=merge]{merge()}} function from base R will be used.
|
||||
}
|
||||
\section{Stable lifecycle}{
|
||||
|
||||
|
@ -4,33 +4,40 @@
|
||||
\alias{mo_matching_score}
|
||||
\title{Calculate the matching score for microorganisms}
|
||||
\usage{
|
||||
mo_matching_score(x, fullname, uncertainty = 1)
|
||||
mo_matching_score(x, n)
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{Any user input value(s)}
|
||||
|
||||
\item{fullname}{A full taxonomic name, that exists in \code{\link[=microorganisms]{microorganisms$fullname}}}
|
||||
\item{n}{A full taxonomic name, that exists in \code{\link[=microorganisms]{microorganisms$fullname}}}
|
||||
|
||||
\item{uncertainty}{The level of uncertainty set in \code{\link[=as.mo]{as.mo()}}, see \code{allow_uncertain} in that function (here, it defaults to 1, but is automatically determined in \code{\link[=as.mo]{as.mo()}} based on the number of transformations needed to get to a result)}
|
||||
}
|
||||
\description{
|
||||
This helper function is used by \code{\link[=as.mo]{as.mo()}} to determine the most probable match of taxonomic records, based on user input.
|
||||
}
|
||||
\details{
|
||||
The matching score is based on four parameters:
|
||||
\enumerate{
|
||||
\item A human pathogenic prevalence \eqn{P}, that is categorised into group 1, 2 and 3 (see \code{\link[=as.mo]{as.mo()}});
|
||||
\item A kingdom index \eqn{K} is set as follows: Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, and all others = 5;
|
||||
\item The level of uncertainty \eqn{U} that is needed to get to a result (1 to 3, see \code{\link[=as.mo]{as.mo()}});
|
||||
\item The \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
|
||||
\section{Matching score for microorganisms}{
|
||||
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m} is calculated as:
|
||||
|
||||
\deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \times \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} p k}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p * k )}
|
||||
|
||||
where:
|
||||
\itemize{
|
||||
\item \eqn{x} is the user input;
|
||||
\item \eqn{n} is a taxonomic name (genus, species and subspecies);
|
||||
\item \eqn{l_{n}}{l_n} is the length of the taxonomic name;
|
||||
\item \eqn{\operatorname{lev}}{lev} is the \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} function;
|
||||
\item \eqn{p} is the human pathogenic prevalence, categorised into group \eqn{1}, \eqn{2} and \eqn{3} (see \emph{Details} in \code{?as.mo}), meaning that \eqn{p = \{1, 2 , 3\}}{p = {1, 2, 3}};
|
||||
\item \eqn{k} is the kingdom index, set as follows: Bacteria = \eqn{1}, Fungi = \eqn{2}, Protozoa = \eqn{3}, Archaea = \eqn{4}, and all others = \eqn{5}, meaning that \eqn{k = \{1, 2 , 3, 4, 5\}}{k = {1, 2, 3, 4, 5}}.
|
||||
}
|
||||
|
||||
\deqn{L' = 1 - \frac{0.5L}{F}}{L' = 1 - ((0.5 * L) / F)}
|
||||
|
||||
The final matching score \eqn{M} is calculated as:
|
||||
\deqn{M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}}{M = L' * (1 / (P * K * U)) = (F - 0.5L) / (F * P * K * U)}
|
||||
All matches are sorted descending on their matching score and for all user input values, the top match will be returned.
|
||||
}
|
||||
|
||||
\examples{
|
||||
as.mo("E. coli")
|
||||
mo_uncertainties()
|
||||
|
||||
mo_matching_score("E. coli", "Escherichia coli")
|
||||
}
|
||||
|
@ -124,6 +124,25 @@ The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stabl
|
||||
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
|
||||
}
|
||||
|
||||
\section{Matching score for microorganisms}{
|
||||
|
||||
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m} is calculated as:
|
||||
|
||||
\deqn{m_{(x, n)} = \frac{l_{n} - 0.5 \times \min \begin{cases}l_{n} \\ \operatorname{lev}(x, n)\end{cases}}{l_{n} p k}}{m(x, n) = ( l_n * min(l_n, lev(x, n) ) ) / ( l_n * p * k )}
|
||||
|
||||
where:
|
||||
\itemize{
|
||||
\item \eqn{x} is the user input;
|
||||
\item \eqn{n} is a taxonomic name (genus, species and subspecies);
|
||||
\item \eqn{l_{n}}{l_n} is the length of the taxonomic name;
|
||||
\item \eqn{\operatorname{lev}}{lev} is the \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} function;
|
||||
\item \eqn{p} is the human pathogenic prevalence, categorised into group \eqn{1}, \eqn{2} and \eqn{3} (see \emph{Details} in \code{?as.mo}), meaning that \eqn{p = \{1, 2 , 3\}}{p = {1, 2, 3}};
|
||||
\item \eqn{k} is the kingdom index, set as follows: Bacteria = \eqn{1}, Fungi = \eqn{2}, Protozoa = \eqn{3}, Archaea = \eqn{4}, and all others = \eqn{5}, meaning that \eqn{k = \{1, 2 , 3, 4, 5\}}{k = {1, 2, 3, 4, 5}}.
|
||||
}
|
||||
|
||||
All matches are sorted descending on their matching score and for all user input values, the top match will be returned.
|
||||
}
|
||||
|
||||
\section{Catalogue of Life}{
|
||||
|
||||
\if{html}{\figure{logo_col.png}{options: height=40px style=margin-bottom:5px} \cr}
|
||||
|
@ -37,7 +37,7 @@ test_that("counts work", {
|
||||
expect_equal(suppressWarnings(count_S(example_isolates$AMX)) + count_I(example_isolates$AMX),
|
||||
count_SI(example_isolates$AMX))
|
||||
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
expect_equal(example_isolates %>% count_susceptible(AMC), 1433)
|
||||
expect_equal(example_isolates %>% count_susceptible(AMC, GEN, only_all_tested = TRUE), 1687)
|
||||
expect_equal(example_isolates %>% count_susceptible(AMC, GEN, only_all_tested = FALSE), 1764)
|
||||
|
@ -37,7 +37,7 @@ test_that("disk works", {
|
||||
expect_warning(as.disk("INVALID VALUE"))
|
||||
|
||||
expect_output(print(as.disk(12)))
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
expect_output(print(tibble(d = as.disk(12))))
|
||||
|
||||
})
|
||||
|
@ -72,7 +72,7 @@ test_that("EUCAST rules work", {
|
||||
expect_equal(suppressWarnings(eucast_rules(a, "mo", info = FALSE)), b)
|
||||
|
||||
# piperacillin must be R in Enterobacteriaceae when tica is R
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
expect_equal(suppressWarnings(
|
||||
example_isolates %>%
|
||||
mutate(TIC = as.rsi("R"),
|
||||
@ -85,7 +85,7 @@ test_that("EUCAST rules work", {
|
||||
as.character()),
|
||||
"R")
|
||||
|
||||
# Azithromicin and Clarythromycin must be equal to Erythromycin
|
||||
# Azithromycin and Clarythromycin must be equal to Erythromycin
|
||||
a <- eucast_rules(data.frame(mo = example_isolates$mo,
|
||||
ERY = example_isolates$ERY,
|
||||
AZM = as.rsi("R"),
|
||||
|
@ -27,7 +27,7 @@ test_that("ggplot_rsi works", {
|
||||
|
||||
skip_if_not_installed("ggplot2")
|
||||
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
library(ggplot2)
|
||||
|
||||
pdf(NULL) # prevent Rplots.pdf being created
|
||||
|
@ -57,7 +57,7 @@ test_that("joins work", {
|
||||
expect_warning(right_join_microorganisms("B_ESCHR_COLI"))
|
||||
expect_warning(full_join_microorganisms("B_ESCHR_COLI"))
|
||||
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
x <- tibble(bact = as.mo("E.coli"))
|
||||
expect_warning(left_join_microorganisms(x %>% group_by(bact), "bact"))
|
||||
|
||||
|
@ -32,6 +32,6 @@ test_that("keyantibiotics work", {
|
||||
expect_true(key_antibiotics_equal(".SS", "SI.", ignore_I = TRUE))
|
||||
expect_false(key_antibiotics_equal(".SS", "SI.", ignore_I = FALSE))
|
||||
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
expect_warning(key_antibiotics(example_isolates %>% slice(rep(1, 10))))
|
||||
})
|
||||
|
@ -25,7 +25,7 @@ test_that("as.mo works", {
|
||||
|
||||
skip_on_cran()
|
||||
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
|
||||
MOs <- microorganisms %>% filter(!is.na(mo), nchar(mo) > 3)
|
||||
expect_identical(as.character(MOs$mo), as.character(as.mo(MOs$mo)))
|
||||
|
@ -40,7 +40,7 @@ test_that("prediction of rsi works", {
|
||||
expect_silent(ggplot_rsi_predict(x))
|
||||
expect_error(ggplot_rsi_predict(example_isolates))
|
||||
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
|
||||
expect_output(rsi_predict(x = filter(example_isolates, mo == "B_ESCHR_COLI"),
|
||||
model = "binomial",
|
||||
|
@ -54,7 +54,7 @@ test_that("rsi works", {
|
||||
expect_identical(as.logical(lapply(example_isolates, is.rsi.eligible)),
|
||||
rep(FALSE, length(example_isolates)))
|
||||
|
||||
library(dplyr)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
# 40 rsi columns
|
||||
expect_equal(example_isolates %>%
|
||||
mutate_at(vars(PEN:RIF), as.character) %>%
|
||||
|
Loading…
Reference in New Issue
Block a user