mirror of
https://github.com/msberends/AMR.git
synced 2025-07-21 10:53:18 +02:00
(v2.1.1.9163) cleanup
This commit is contained in:
@ -47,9 +47,9 @@
|
||||
#' @inheritSection as.sir Interpretation of SIR
|
||||
#' @details
|
||||
#' For a more automated and comprehensive analysis, consider using [antibiogram()] or [wisca()], which streamline many aspects of susceptibility reporting and, importantly, also support WISCA. The functions described here offer a more hands-on, manual approach for greater customisation.
|
||||
#'
|
||||
#'
|
||||
#' **Remember that you should filter your data to let it contain only first isolates!** This is needed to exclude duplicates and to reduce selection bias. Use [first_isolate()] to determine them in your data set with one of the four available algorithms.
|
||||
#'
|
||||
#'
|
||||
#' The function [resistance()] is equal to the function [proportion_R()]. The function [susceptibility()] is equal to the function [proportion_SI()]. Since AMR v3.0, [proportion_SI()] and [proportion_I()] include dose-dependent susceptibility ('SDD').
|
||||
#'
|
||||
#' Use [sir_confidence_interval()] to calculate the confidence interval, which relies on [binom.test()], i.e., the Clopper-Pearson method. This function returns a vector of length 2 at default for antimicrobial *resistance*. Change the `side` argument to "left"/"min" or "right"/"max" to return a single value, and change the `ab_result` argument to e.g. `c("S", "I")` to test for antimicrobial *susceptibility*, see Examples.
|
||||
@ -293,7 +293,7 @@ sir_confidence_interval <- function(...,
|
||||
),
|
||||
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
|
||||
)
|
||||
|
||||
|
||||
if (x == 0) {
|
||||
out <- c(0, 0)
|
||||
} else {
|
||||
@ -301,7 +301,7 @@ sir_confidence_interval <- function(...,
|
||||
out <- stats::binom.test(x = x, n = n, conf.level = confidence_level)$conf.int
|
||||
}
|
||||
out <- set_clean_class(out, "numeric")
|
||||
|
||||
|
||||
if (side %in% c("left", "l", "lower", "lowest", "less", "min")) {
|
||||
out <- out[1]
|
||||
} else if (side %in% c("right", "r", "higher", "highest", "greater", "g", "max")) {
|
||||
@ -317,7 +317,7 @@ sir_confidence_interval <- function(...,
|
||||
# out[is.na(out)] <- 0
|
||||
out <- paste(out, collapse = ifelse(isTRUE(collapse), "-", collapse))
|
||||
}
|
||||
|
||||
|
||||
if (n < minimum) {
|
||||
warning_("Introducing NA: ",
|
||||
ifelse(n == 0, "no", paste("only", n)),
|
||||
|
Reference in New Issue
Block a user