1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-15 23:21:37 +01:00

new mo_cleaning_regex

This commit is contained in:
dr. M.S. (Matthijs) Berends 2022-10-04 11:20:58 +02:00
parent a62ff0a1b9
commit 082e52a0dd
10 changed files with 80 additions and 148 deletions

View File

@ -1,6 +1,6 @@
Package: AMR
Version: 1.8.2.9025
Date: 2022-10-03
Version: 1.8.2.9026
Date: 2022-10-04
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by

View File

@ -266,6 +266,7 @@ export(mdro)
export(mean_amr_distance)
export(mo_authors)
export(mo_class)
export(mo_cleaning_regex)
export(mo_domain)
export(mo_failures)
export(mo_family)

View File

@ -1,4 +1,4 @@
# AMR 1.8.2.9025
# AMR 1.8.2.9026
This version will eventually become v2.0! We're happy to reach a new major milestone soon!

120
R/mo.R
View File

@ -38,19 +38,16 @@
#'
#' This excludes enterococci at default (who are in group D), use `Lancefield = "all"` to also categorise all enterococci as group D.
#' @param minimum_matching_score a numeric value to set as the lower limit for the [MO matching score][mo_matching_score()]. When left blank, this will be determined automatically based on the character length of `x`, its [taxonomic kingdom][microorganisms] and [human pathogenicity][mo_matching_score()].
#' @param allow_uncertain a number between `0` (or `"none"`) and `3` (or `"all"`), or `TRUE` (= `2`) or `FALSE` (= `0`) to indicate whether the input should be checked for less probable results, see *Details*
#' @param keep_synonyms a [logical] to indicate if old, previously valid taxonomic names must be preserved and not be corrected to currently accepted names. The default is `FALSE`, which will return a note if old taxonomic names were processed. The default can be set with `options(AMR_keep_synonyms = TRUE)` or `options(AMR_keep_synonyms = FALSE)`.
#' @param reference_df a [data.frame] to be used for extra reference when translating `x` to a valid [`mo`]. See [set_mo_source()] and [get_mo_source()] to automate the usage of your own codes (e.g. used in your analysis or organisation).
#' @param ignore_pattern a regular expression (case-insensitive) of which all matches in `x` must return `NA`. This can be convenient to exclude known non-relevant input and can also be set with the option `AMR_ignore_pattern`, e.g. `options(AMR_ignore_pattern = "(not reported|contaminated flora)")`.
#' @param ignore_pattern a [regular expression][base::regex] (case-insensitive) of which all matches in `x` must return `NA`. This can be convenient to exclude known non-relevant input and can also be set with the option `AMR_ignore_pattern`, e.g. `options(AMR_ignore_pattern = "(not reported|contaminated flora)")`.
#' @param remove_from_input a [regular expression][base::regex] (case-insensitive) to clean the input of `x`. Everything matched in `x` will be removed. At default, this is the outcome of [mo_cleaning_regex()], which removes texts between brackets and texts such as "species" and "serovar".
#' @param language language to translate text like "no growth", which defaults to the system language (see [get_AMR_locale()])
#' @param info a [logical] to indicate if a progress bar should be printed if more than 25 items are to be coerced, defaults to `TRUE` only in interactive mode
#' @param ... other arguments passed on to functions
#' @rdname as.mo
#' @aliases mo
#' @keywords mo Becker becker Lancefield lancefield guess
#' @details
#' ### General Info
#'
#' A microorganism (MO) code from this package (class: [`mo`]) is human readable and typically looks like these examples:
#' ```
#' Code Full name
@ -60,39 +57,24 @@
#' B_KLBSL_PNMN_RHNS Klebsiella pneumoniae rhinoscleromatis
#' | | | |
#' | | | |
#' | | | \---> subspecies, a 4-5 letter acronym
#' | | \----> species, a 4-5 letter acronym
#' | \----> genus, a 5-7 letter acronym
#' | | | \---> subspecies, a 3-5 letter acronym
#' | | \----> species, a 3-6 letter acronym
#' | \----> genus, a 4-8 letter acronym
#' \----> taxonomic kingdom: A (Archaea), AN (Animalia), B (Bacteria),
#' F (Fungi), PL (Plantae), P (Protozoa)
#' ```
#'
#' Values that cannot be coerced will be considered 'unknown' and will get the MO code `UNKNOWN`.
#' Values that cannot be coerced will be considered 'unknown' and will be returned as the MO code `UNKNOWN` with a warning.
#'
#' Use the [`mo_*`][mo_property()] functions to get properties based on the returned code, see *Examples*.
#'
#' The algorithm uses data from the List of Prokaryotic names with Standing in Nomenclature (LPSN) and the Global Biodiversity Information Facility (GBIF) (see [microorganisms]).
#'
#' The [as.mo()] function uses several coercion rules for fast and logical results. It assesses the input matching criteria in the following order:
#'
#' 1. Human pathogenic prevalence: the function starts with more prevalent microorganisms, followed by less prevalent ones;
#' 2. Taxonomic kingdom: the function starts with determining Bacteria, then Fungi, then Protozoa, then others;
#' 3. Breakdown of input values to identify possible matches.
#'
#' This will lead to the effect that e.g. `"E. coli"` (a microorganism highly prevalent in humans) will return the microbial ID of *Escherichia coli* and not *Entamoeba coli* (a microorganism less prevalent in humans), although the latter would alphabetically come first.
#' The [as.mo()] function uses a novel [matching score algorithm][mo_matching_score()] (see *Matching Score for Microorganisms* below) to match input against the [available microbial taxonomy][microoganisms] in this package. This will lead to the effect that e.g. `"E. coli"` (a microorganism highly prevalent in humans) will return the microbial ID of *Escherichia coli* and not *Entamoeba coli* (a microorganism less prevalent in humans), although the latter would alphabetically come first. The algorithm uses data from the List of Prokaryotic names with Standing in Nomenclature (LPSN) and the Global Biodiversity Information Facility (GBIF) (see [microorganisms]).
#'
#' ### Coping with Uncertain Results
#'
#' Users can control the coercion rules by setting the `allow_uncertain` argument in the [as.mo()] function. The following values or levels can be used:
#' Results of non-exact taxonomic input are based on their [matching score][mo_matching_score()]. The lowest allowed score can be set with the `minimum_matching_score` argument. At default this will be determined based on the character length of the input, and the [taxonomic kingdom][microorganisms] and [human pathogenicity][mo_matching_score()] of the taxonomic outcome. If values are matched with uncertainty, a message will be shown to suggest the user to evaluate the results with [mo_uncertainties()], which returns a [data.frame] with all specifications.
#'
#' - `0`: no additional rules are applied;
#' - `1`: allow previously accepted (but now invalid) taxonomic names
#' - `2`: allow all of `1`, strip values between brackets, inverse the words of the input, strip off text elements from the end keeping at least two elements;
#' - `3`: allow all of level `1` and `2`, strip off text elements from the end, allow any part of a taxonomic name;
#' - `TRUE` (default): equivalent to `2`;
#' - `FALSE`: equivalent to `0``.
#'
#' The default is `allow_uncertain = TRUE`, which is equal to uncertainty level 2. Using `allow_uncertain = FALSE` is equal to uncertainty level 0 and will skip all rules. You can also use e.g. `as.mo(..., allow_uncertain = 1)` to only allow up to level 1 uncertainty.
#' To increase the quality of matching, the `remove_from_input` argument can be used to clean the input (i.e., `x`). This must be a [regular expression][base::regex] that matches parts of the input that should be removed before the input is matched against the [available microbial taxonomy][microoganisms]. It will be matched Perl-compatible and case-insensitive. The default value of `remove_from_input` is the outcome of the helper function [mo_cleaning_regex()].
#'
#' There are three helper functions that can be run after using the [as.mo()] function:
#' - Use [mo_uncertainties()] to get a [data.frame] that prints in a pretty format with all taxonomic names that were guessed. The output contains the matching score for all matches (see *Matching Score for Microorganisms* below).
@ -165,17 +147,16 @@ as.mo <- function(x,
Becker = FALSE,
Lancefield = FALSE,
minimum_matching_score = NULL,
allow_uncertain = TRUE,
keep_synonyms = getOption("AMR_keep_synonyms", FALSE),
reference_df = get_mo_source(),
ignore_pattern = getOption("AMR_ignore_pattern", NULL),
remove_from_input = mo_cleaning_regex(),
language = get_AMR_locale(),
info = interactive(),
...) {
meet_criteria(x, allow_class = c("mo", "data.frame", "list", "character", "numeric", "integer", "factor"), allow_NA = TRUE)
meet_criteria(Becker, allow_class = c("logical", "character"), has_length = 1)
meet_criteria(Lancefield, allow_class = c("logical", "character"), has_length = 1)
meet_criteria(allow_uncertain, allow_class = c("logical", "numeric", "integer"), has_length = 1)
meet_criteria(keep_synonyms, allow_class = "logical", has_length = 1)
meet_criteria(minimum_matching_score, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE)
meet_criteria(reference_df, allow_class = "data.frame", allow_NULL = TRUE)
@ -183,16 +164,7 @@ as.mo <- function(x,
language <- validate_language(language)
meet_criteria(info, allow_class = "logical", has_length = 1)
# set the microorganisms data set to use for all lookup
mo_data <- MO_lookup
allow_uncertain <- translate_allow_uncertain(allow_uncertain)
if (allow_uncertain < 1) {
# do not allow old names
mo_data <- mo_data[which(mo_data$status == "accepted"), , drop = FALSE]
}
if (tryCatch(all(x %in% c(mo_data$mo, NA)) &&
if (tryCatch(all(x %in% c(MO_lookup$mo, NA)) &&
isFALSE(Becker) &&
isFALSE(Lancefield), error = function(e) FALSE)) {
# don't look into valid MO codes, just return them
@ -221,9 +193,9 @@ as.mo <- function(x,
out[x %in% reference_df[[1]]] <- reference_df[[2]][match(x[x %in% reference_df[[1]]], reference_df[[1]])]
}
# From MO code ----
out[is.na(out) & x %in% mo_data$mo] <- x[is.na(out) & x %in% mo_data$mo]
out[is.na(out) & x %in% MO_lookup$mo] <- x[is.na(out) & x %in% MO_lookup$mo]
# From full name ----
out[is.na(out) & x %in% mo_data$fullname] <- mo_data$mo[match(x[is.na(out) & x %in% mo_data$fullname], mo_data$fullname)]
out[is.na(out) & x %in% MO_lookup$fullname] <- MO_lookup$mo[match(x[is.na(out) & x %in% MO_lookup$fullname], MO_lookup$fullname)]
# From known codes ----
out[is.na(out) & x %in% AMR::microorganisms.codes$code] <- AMR::microorganisms.codes$mo[match(x[is.na(out) & x %in% AMR::microorganisms.codes$code], AMR::microorganisms.codes$code)]
# From SNOMED ----
@ -236,7 +208,7 @@ as.mo <- function(x,
out[is.na(out)] <- convert_colloquial_input(x[is.na(out)])
# From previous hits in this session ----
old <- out
out[is.na(out) & x %in% pkg_env$mo_previously_coerced$x] <- pkg_env$mo_previously_coerced$mo[match(x[is.na(out) & x %in% pkg_env$mo_previously_coerced$x], pkg_env$mo_previously_coerced$x)]
out[is.na(out) & paste(x, minimum_matching_score) %in% pkg_env$mo_previously_coerced$x] <- pkg_env$mo_previously_coerced$mo[match(paste(x, minimum_matching_score)[is.na(out) & paste(x, minimum_matching_score) %in% pkg_env$mo_previously_coerced$x], pkg_env$mo_previously_coerced$x)]
new <- out
if (isTRUE(info) && message_not_thrown_before("as.mo", old, new, entire_session = TRUE) && any(is.na(old) & !is.na(new), na.rm = TRUE)) {
message_(
@ -266,20 +238,17 @@ as.mo <- function(x,
x_coerced <- vapply(FUN.VALUE = character(1), x_unique, function(x_search) {
progress$tick()
print(x_search)
# some required cleaning steps
x_out <- trimws2(x_search)
x_out <- gsub("[^A-Za-z-]+", " ", x_out, perl = TRUE)
x_out <- gsub(" +", " ", x_out, perl = TRUE)
x_out <- gsub("(^| )(e?spp|e?ssp|e?ss|e?sp|e?subsp|sube?species|biovar|biotype|serovar|e?species)( |$)", "", x_out, ignore.case = TRUE, perl = TRUE)
# this applies the `remove_from_input` argument, which defaults to mo_cleaning_regex()
x_out <- gsub(remove_from_input, " ", x_out, ignore.case = TRUE, perl = TRUE)
x_out <- trimws2(gsub(" +", " ", x_out, perl = TRUE))
x_search_cleaned <- x_out
x_out <- tolower(x_out)
if (allow_uncertain == 2) {
}
if (allow_uncertain == 3) {
}
print(x_out)
# take out the parts, split by space
x_parts <- strsplit(gsub("-", " ", x_out, fixed = TRUE), " ", fixed = TRUE)[[1]]
@ -287,16 +256,16 @@ as.mo <- function(x,
# do a pre-match on first character (and if it contains a space, first chars of first two terms)
if (length(x_parts) %in% c(2, 3)) {
# for genus + species + subspecies
filtr <- which(mo_data$full_first == substr(x_parts[1], 1, 1) & mo_data$species_first == substr(x_parts[2], 1, 1))
filtr <- which(MO_lookup$full_first == substr(x_parts[1], 1, 1) & MO_lookup$species_first == substr(x_parts[2], 1, 1))
} else if (length(x_parts) > 3) {
first_chars <- paste0("(^| )", "[", paste(substr(x_parts, 1, 1), collapse = ""), "]")
filtr <- which(mo_data$full_first %like_case% first_chars)
filtr <- which(MO_lookup$full_first %like_case% first_chars)
} else if (nchar(x_out) == 4) {
# no space and 4 characters - probably a code such as STAU or ESCO!
if (isTRUE(info)) {
message_("Input \"", x_search, "\" is assumed to be a microorganism code - trying to match on ", vector_and(c(substr(x_out, 1, 2), substr(x_out, 3, 4)), sort = FALSE))
}
filtr <- which(mo_data$fullname_lower %like_case% paste0("(^| )", substr(x_out, 1, 2), ".* ", substr(x_out, 3, 4)))
filtr <- which(MO_lookup$fullname_lower %like_case% paste0("(^| )", substr(x_out, 1, 2), ".* ", substr(x_out, 3, 4)))
} else if (nchar(x_out) <= 6) {
# no space and 5-6 characters - probably a code such as STAAUR or ESCCOL!
first_part <- paste0(substr(x_out, 1, 2), "[a-z]*", substr(x_out, 3, 3))
@ -304,20 +273,20 @@ as.mo <- function(x,
if (isTRUE(info)) {
message_("Input \"", x_search, "\" is assumed to be a microorganism code - trying to match on ", vector_and(c(gsub("[a-z]*", "(...)", first_part, fixed = TRUE), second_part), sort = FALSE))
}
filtr <- which(mo_data$fullname_lower %like_case% paste0("(^| )", first_part, ".* ", second_part))
filtr <- which(MO_lookup$fullname_lower %like_case% paste0("(^| )", first_part, ".* ", second_part))
} else {
filtr <- which(mo_data$full_first == substr(x_out, 1, 1))
filtr <- which(MO_lookup$full_first == substr(x_out, 1, 1))
}
if (length(filtr) == 0) {
mo_to_search <- mo_data$fullname
mo_to_search <- MO_lookup$fullname
} else {
mo_to_search <- mo_data$fullname[filtr]
mo_to_search <- MO_lookup$fullname[filtr]
}
pkg_env$mo_to_search <- mo_to_search
# determine the matching score on the original search value
m <- mo_matching_score(x = x_search_cleaned, n = mo_to_search)
if (is.null(minimum_matching_score)) {
minimum_matching_score_current <- min(0.7, min(10, nchar(x_search_cleaned)) * 0.08)
minimum_matching_score_current <- min(0.6, min(10, nchar(x_search_cleaned)) * 0.08)
# correct back for prevalence
minimum_matching_score_current <- minimum_matching_score_current / MO_lookup$prevalence[match(mo_to_search, MO_lookup$fullname)]
# correct back for kingdom
@ -325,7 +294,6 @@ as.mo <- function(x,
} else {
minimum_matching_score_current <- minimum_matching_score
}
m[m < minimum_matching_score_current] <- NA_real_
top_hits <- mo_to_search[order(m, decreasing = TRUE, na.last = NA)] # na.last = NA will remove the NAs
@ -349,7 +317,7 @@ as.mo <- function(x,
# save to package env to save time for next time
pkg_env$mo_previously_coerced <- unique(rbind(pkg_env$mo_previously_coerced,
data.frame(
x = paste(x_search, min(minimum_matching_score_current, na.rm = TRUE)),
x = paste(x_search, minimum_matching_score),
mo = result_mo,
stringsAsFactors = FALSE
),
@ -728,7 +696,7 @@ print.mo_uncertainties <- function(x, ...) {
return(invisible(NULL))
}
cat(word_wrap("Matching scores are based on pathogenicity in humans and the resemblance between the input and the full taxonomic name. See `?mo_matching_score`.\n\n", add_fn = font_blue))
cat(word_wrap("Matching scores are based on the resemblance between the input and the full taxonomic name, and the pathogenicity in humans. See `?mo_matching_score`.\n\n", add_fn = font_blue))
if (has_colour()) {
cat(word_wrap("Colour keys: ",
font_red_bg(" 0.000-0.499 "),
@ -869,6 +837,18 @@ mo_reset_session <- function() {
}
}
#' @rdname as.mo
#' @export
mo_cleaning_regex <- function() {
paste0(
"(",
"[^A-Za-z- \\(\\)\\[\\]{}]+",
"|",
"([({]|\\[).+([})]|\\])",
"|",
"(^| )(e?spp|e?ssp|e?ss|e?sp|e?subsp|sube?species|biovar|biotype|serovar|e?species)( |$))")
}
nr2char <- function(x) {
if (x %in% c(1:10)) {
v <- c(
@ -881,22 +861,6 @@ nr2char <- function(x) {
}
}
translate_allow_uncertain <- function(allow_uncertain) {
if (isTRUE(allow_uncertain)) {
# default to uncertainty level 2
allow_uncertain <- 2
} else {
allow_uncertain[tolower(allow_uncertain) == "none"] <- 0
allow_uncertain[tolower(allow_uncertain) == "all"] <- 3
allow_uncertain <- as.integer(allow_uncertain)
stop_ifnot(allow_uncertain %in% c(0:3),
'`allow_uncertain` must be a number between 0 (or "none") and 3 (or "all"), or TRUE (= 2) or FALSE (= 0)',
call = FALSE
)
}
allow_uncertain
}
get_mo_uncertainties <- function() {
remember <- list(uncertainties = pkg_env$mo_uncertainties)
# empty them, otherwise e.g. mo_shortname("Chlamydophila psittaci") will give 3 notes

View File

@ -33,6 +33,7 @@
#' @author Dr. Matthijs Berends
#' @param x Any user input value(s)
#' @param n A full taxonomic name, that exists in [`microorganisms$fullname`][microorganisms]
#' @note This algorithm was described in: Berends MS *et al.* (2022). **AMR: An R Package for Working with Antimicrobial Resistance Data**. *Journal of Statistical Software*, 104(3), 1-31; \doi{10.18637/jss.v104.i03}.
#' @section Matching Score for Microorganisms:
#' With ambiguous user input in [as.mo()] and all the [`mo_*`][mo_property()] functions, the returned results are chosen based on their matching score using [mo_matching_score()]. This matching score \eqn{m}, is calculated as:
#'
@ -43,7 +44,7 @@
#' * \ifelse{html}{\out{<i>x</i> is the user input;}}{\eqn{x} is the user input;}
#' * \ifelse{html}{\out{<i>n</i> is a taxonomic name (genus, species, and subspecies);}}{\eqn{n} is a taxonomic name (genus, species, and subspecies);}
#' * \ifelse{html}{\out{<i>l<sub>n</sub></i> is the length of <i>n</i>;}}{l_n is the length of \eqn{n};}
#' * \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a>, which counts any insertion, deletion and substitution as 1 that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function, which counts any insertion, deletion and substitution as 1 that is needed to change \eqn{x} into \eqn{n};}
#' * \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a> (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change \eqn{x} into \eqn{n};}
#' * \ifelse{html}{\out{<i>p<sub>n</sub></i> is the human pathogenic prevalence group of <i>n</i>, as described below;}}{p_n is the human pathogenic prevalence group of \eqn{n}, as described below;}
#' * \ifelse{html}{\out{<i>k<sub>n</sub></i> is the taxonomic kingdom of <i>n</i>, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}}{l_n is the taxonomic kingdom of \eqn{n}, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}
#'
@ -91,14 +92,14 @@ mo_matching_score <- function(x, n) {
l_n <- nchar(n)
lev <- double(length = length(x))
l_n.lev <- double(length = length(x))
lev <- unlist(Map(
f = utils::adist,
x,
n,
lev <- unlist(Map(f = function(a, b) {
as.double(utils::adist(a, b,
ignore.case = FALSE,
USE.NAMES = FALSE,
fixed = TRUE
))
fixed = TRUE,
costs = c(insertions = 1, deletions = 2, substitutions = 2),
counts = FALSE))
}, x, n, USE.NAMES = FALSE))
l_n.lev[l_n < lev] <- l_n[l_n < lev]
l_n.lev[lev < l_n] <- lev[lev < l_n]
l_n.lev[lev == l_n] <- lev[lev == l_n]

View File

@ -782,7 +782,7 @@ mo_validate <- function(x, property, language, keep_synonyms = keep_synonyms, ..
# try to catch an error when inputting an invalid argument
# so the 'call.' can be set to FALSE
tryCatch(x[1L] %in% AMR::microorganisms[1, property, drop = TRUE],
tryCatch(x[1L] %in% unlist(AMR::microorganisms[1, property, drop = TRUE]),
error = function(e) stop(e$message, call. = FALSE)
)
@ -802,7 +802,7 @@ mo_validate <- function(x, property, language, keep_synonyms = keep_synonyms, ..
if (all(x %in% c(mo_data_check$mo, NA)) && !has_Becker_or_Lancefield) {
# do nothing, just don't run the other if-else's
} else if (all(x %in% c(mo_data_check[[property]], NA)) && !has_Becker_or_Lancefield) {
} else if (all(x %in% c(unlist(mo_data_check[[property]]), NA)) && !has_Becker_or_Lancefield) {
# no need to do anything, just return it
return(x)
} else {

View File

@ -232,14 +232,6 @@ expect_equal(suppressMessages(as.character(as.mo("Escherichia blattae"))), "B_SH
expect_equal(suppressMessages(as.character(as.mo(c("E. coli", "Chlamydo psittaci")))), c("B_ESCHR_COLI", "B_CHLMY_PSTT"))
expect_equal(suppressMessages(mo_name("eubcom")), "Clostridium combesii")
# check uncertain names
expect_equal(suppressMessages(as.character(as.mo("staaur extratest", allow_uncertain = TRUE))), "B_STPHY_AURS")
expect_equal(suppressWarnings(as.character(as.mo("staaur extratest", allow_uncertain = FALSE))), "UNKNOWN")
expect_message(as.mo("e coli extra_text", allow_uncertain = TRUE))
expect_equal(suppressMessages(as.character(as.mo("unexisting aureus", allow_uncertain = 3))), "B_STPHY_AURS")
expect_equal(suppressMessages(as.character(as.mo("unexisting staphy", allow_uncertain = 3))), "B_STPHY_COPS")
expect_equal(suppressMessages(as.character(as.mo(c("s aure THISISATEST", "Staphylococcus aureus unexisting"), allow_uncertain = 3))), c("B_STPHY_AURS_AURS", "B_STPHY_AURS_AURS"))
# predefined reference_df
expect_equal(
as.character(as.mo("TestingOwnID",
@ -311,11 +303,6 @@ expect_equal(
rep("UNKNOWN", 3)
)
expect_error(translate_allow_uncertain(5))
# debug mode
expect_stdout(print(suppressMessages(suppressWarnings(as.mo("kshgcjkhsdgkshjdfsfvsdfv", debug = TRUE, allow_uncertain = 3)))))
# ..coccus
expect_equal(
as.character(as.mo(c("meningococ", "gonococ", "pneumococ"))),

View File

@ -8,6 +8,7 @@
\alias{mo_uncertainties}
\alias{mo_renamed}
\alias{mo_reset_session}
\alias{mo_cleaning_regex}
\title{Transform Input to a Microorganism Code}
\usage{
as.mo(
@ -15,10 +16,10 @@ as.mo(
Becker = FALSE,
Lancefield = FALSE,
minimum_matching_score = NULL,
allow_uncertain = TRUE,
keep_synonyms = getOption("AMR_keep_synonyms", FALSE),
reference_df = get_mo_source(),
ignore_pattern = getOption("AMR_ignore_pattern", NULL),
remove_from_input = mo_cleaning_regex(),
language = get_AMR_locale(),
info = interactive(),
...
@ -33,6 +34,8 @@ mo_uncertainties()
mo_renamed()
mo_reset_session()
mo_cleaning_regex()
}
\arguments{
\item{x}{a \link{character} vector or a \link{data.frame} with one or two columns}
@ -47,13 +50,13 @@ This excludes enterococci at default (who are in group D), use \code{Lancefield
\item{minimum_matching_score}{a numeric value to set as the lower limit for the \link[=mo_matching_score]{MO matching score}. When left blank, this will be determined automatically based on the character length of \code{x}, its \link[=microorganisms]{taxonomic kingdom} and \link[=mo_matching_score]{human pathogenicity}.}
\item{allow_uncertain}{a number between \code{0} (or \code{"none"}) and \code{3} (or \code{"all"}), or \code{TRUE} (= \code{2}) or \code{FALSE} (= \code{0}) to indicate whether the input should be checked for less probable results, see \emph{Details}}
\item{keep_synonyms}{a \link{logical} to indicate if old, previously valid taxonomic names must be preserved and not be corrected to currently accepted names. The default is \code{FALSE}, which will return a note if old taxonomic names were processed. The default can be set with \code{options(AMR_keep_synonyms = TRUE)} or \code{options(AMR_keep_synonyms = FALSE)}.}
\item{reference_df}{a \link{data.frame} to be used for extra reference when translating \code{x} to a valid \code{\link{mo}}. See \code{\link[=set_mo_source]{set_mo_source()}} and \code{\link[=get_mo_source]{get_mo_source()}} to automate the usage of your own codes (e.g. used in your analysis or organisation).}
\item{ignore_pattern}{a regular expression (case-insensitive) of which all matches in \code{x} must return \code{NA}. This can be convenient to exclude known non-relevant input and can also be set with the option \code{AMR_ignore_pattern}, e.g. \code{options(AMR_ignore_pattern = "(not reported|contaminated flora)")}.}
\item{ignore_pattern}{a \link[base:regex]{regular expression} (case-insensitive) of which all matches in \code{x} must return \code{NA}. This can be convenient to exclude known non-relevant input and can also be set with the option \code{AMR_ignore_pattern}, e.g. \code{options(AMR_ignore_pattern = "(not reported|contaminated flora)")}.}
\item{remove_from_input}{a \link[base:regex]{regular expression} (case-insensitive) to clean the input of \code{x}. Everything matched in \code{x} will be removed. At default, this is the outcome of \code{\link[=mo_cleaning_regex]{mo_cleaning_regex()}}, which removes texts between brackets and texts such as "species" and "serovar".}
\item{language}{language to translate text like "no growth", which defaults to the system language (see \code{\link[=get_AMR_locale]{get_AMR_locale()}})}
@ -68,8 +71,6 @@ A \link{character} \link{vector} with additional class \code{\link{mo}}
Use this function to determine a valid microorganism code (\code{\link{mo}}). Determination is done using intelligent rules and the complete taxonomic kingdoms Animalia, Archaea, Bacteria and Protozoa, and most microbial species from the kingdom Fungi (see \emph{Source}). The input can be almost anything: a full name (like \code{"Staphylococcus aureus"}), an abbreviated name (such as \code{"S. aureus"}), an abbreviation known in the field (such as \code{"MRSA"}), or just a genus. See \emph{Examples}.
}
\details{
\subsection{General Info}{
A microorganism (MO) code from this package (class: \code{\link{mo}}) is human readable and typically looks like these examples:
\if{html}{\out{<div class="sourceCode">}}\preformatted{ Code Full name
@ -79,42 +80,23 @@ A microorganism (MO) code from this package (class: \code{\link{mo}}) is human r
B_KLBSL_PNMN_RHNS Klebsiella pneumoniae rhinoscleromatis
| | | |
| | | |
| | | \\---> subspecies, a 4-5 letter acronym
| | \\----> species, a 4-5 letter acronym
| \\----> genus, a 5-7 letter acronym
| | | \\---> subspecies, a 3-5 letter acronym
| | \\----> species, a 3-6 letter acronym
| \\----> genus, a 4-8 letter acronym
\\----> taxonomic kingdom: A (Archaea), AN (Animalia), B (Bacteria),
F (Fungi), PL (Plantae), P (Protozoa)
}\if{html}{\out{</div>}}
Values that cannot be coerced will be considered 'unknown' and will get the MO code \code{UNKNOWN}.
Values that cannot be coerced will be considered 'unknown' and will be returned as the MO code \code{UNKNOWN} with a warning.
Use the \code{\link[=mo_property]{mo_*}} functions to get properties based on the returned code, see \emph{Examples}.
The algorithm uses data from the List of Prokaryotic names with Standing in Nomenclature (LPSN) and the Global Biodiversity Information Facility (GBIF) (see \link{microorganisms}).
The \code{\link[=as.mo]{as.mo()}} function uses several coercion rules for fast and logical results. It assesses the input matching criteria in the following order:
\enumerate{
\item Human pathogenic prevalence: the function starts with more prevalent microorganisms, followed by less prevalent ones;
\item Taxonomic kingdom: the function starts with determining Bacteria, then Fungi, then Protozoa, then others;
\item Breakdown of input values to identify possible matches.
}
This will lead to the effect that e.g. \code{"E. coli"} (a microorganism highly prevalent in humans) will return the microbial ID of \emph{Escherichia coli} and not \emph{Entamoeba coli} (a microorganism less prevalent in humans), although the latter would alphabetically come first.
}
The \code{\link[=as.mo]{as.mo()}} function uses a novel \link[=mo_matching_score]{matching score algorithm} (see \emph{Matching Score for Microorganisms} below) to match input against the \link[=microoganisms]{available microbial taxonomy} in this package. This will lead to the effect that e.g. \code{"E. coli"} (a microorganism highly prevalent in humans) will return the microbial ID of \emph{Escherichia coli} and not \emph{Entamoeba coli} (a microorganism less prevalent in humans), although the latter would alphabetically come first. The algorithm uses data from the List of Prokaryotic names with Standing in Nomenclature (LPSN) and the Global Biodiversity Information Facility (GBIF) (see \link{microorganisms}).
\subsection{Coping with Uncertain Results}{
Users can control the coercion rules by setting the \code{allow_uncertain} argument in the \code{\link[=as.mo]{as.mo()}} function. The following values or levels can be used:
\itemize{
\item \code{0}: no additional rules are applied;
\item \code{1}: allow previously accepted (but now invalid) taxonomic names
\item \code{2}: allow all of \code{1}, strip values between brackets, inverse the words of the input, strip off text elements from the end keeping at least two elements;
\item \code{3}: allow all of level \code{1} and \code{2}, strip off text elements from the end, allow any part of a taxonomic name;
\item \code{TRUE} (default): equivalent to \code{2};
\item \code{FALSE}: equivalent to `0``.
}
Results of non-exact taxonomic input are based on their \link[=mo_matching_score]{matching score}. The lowest allowed score can be set with the \code{minimum_matching_score} argument. At default this will be determined based on the character length of the input, and the \link[=microorganisms]{taxonomic kingdom} and \link[=mo_matching_score]{human pathogenicity} of the taxonomic outcome. If values are matched with uncertainty, a message will be shown to suggest the user to evaluate the results with \code{\link[=mo_uncertainties]{mo_uncertainties()}}, which returns a \link{data.frame} with all specifications.
The default is \code{allow_uncertain = TRUE}, which is equal to uncertainty level 2. Using \code{allow_uncertain = FALSE} is equal to uncertainty level 0 and will skip all rules. You can also use e.g. \code{as.mo(..., allow_uncertain = 1)} to only allow up to level 1 uncertainty.
To increase the quality of matching, the \code{remove_from_input} argument can be used to clean the input (i.e., \code{x}). This must be a \link[base:regex]{regular expression} that matches parts of the input that should be removed before the input is matched against the \link[=microoganisms]{available microbial taxonomy}. It will be matched Perl-compatible and case-insensitive. The default value of \code{remove_from_input} is the outcome of the helper function \code{\link[=mo_cleaning_regex]{mo_cleaning_regex()}}.
There are three helper functions that can be run after using the \code{\link[=as.mo]{as.mo()}} function:
\itemize{
@ -155,7 +137,7 @@ where:
\item \ifelse{html}{\out{<i>x</i> is the user input;}}{\eqn{x} is the user input;}
\item \ifelse{html}{\out{<i>n</i> is a taxonomic name (genus, species, and subspecies);}}{\eqn{n} is a taxonomic name (genus, species, and subspecies);}
\item \ifelse{html}{\out{<i>l<sub>n</sub></i> is the length of <i>n</i>;}}{l_n is the length of \eqn{n};}
\item \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a>, which counts any insertion, deletion and substitution as 1 that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function, which counts any insertion, deletion and substitution as 1 that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a> (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{<i>p<sub>n</sub></i> is the human pathogenic prevalence group of <i>n</i>, as described below;}}{p_n is the human pathogenic prevalence group of \eqn{n}, as described below;}
\item \ifelse{html}{\out{<i>k<sub>n</sub></i> is the taxonomic kingdom of <i>n</i>, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}}{l_n is the taxonomic kingdom of \eqn{n}, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}
}
@ -224,9 +206,3 @@ mo_is_intrinsic_resistant("ESCCOL", ab = "vanco")
The \code{\link[=mo_property]{mo_*}} functions (such as \code{\link[=mo_genus]{mo_genus()}}, \code{\link[=mo_gramstain]{mo_gramstain()}}) to get properties based on the returned code.
}
\keyword{Becker}
\keyword{Lancefield}
\keyword{becker}
\keyword{guess}
\keyword{lancefield}
\keyword{mo}

View File

@ -14,6 +14,9 @@ mo_matching_score(x, n)
\description{
This algorithm is used by \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions to determine the most probable match of taxonomic records based on user input.
}
\note{
This algorithm was described in: Berends MS \emph{et al.} (2022). \strong{AMR: An R Package for Working with Antimicrobial Resistance Data}. \emph{Journal of Statistical Software}, 104(3), 1-31; \doi{10.18637/jss.v104.i03}.
}
\section{Matching Score for Microorganisms}{
With ambiguous user input in \code{\link[=as.mo]{as.mo()}} and all the \code{\link[=mo_property]{mo_*}} functions, the returned results are chosen based on their matching score using \code{\link[=mo_matching_score]{mo_matching_score()}}. This matching score \eqn{m}, is calculated as:
@ -25,7 +28,7 @@ where:
\item \ifelse{html}{\out{<i>x</i> is the user input;}}{\eqn{x} is the user input;}
\item \ifelse{html}{\out{<i>n</i> is a taxonomic name (genus, species, and subspecies);}}{\eqn{n} is a taxonomic name (genus, species, and subspecies);}
\item \ifelse{html}{\out{<i>l<sub>n</sub></i> is the length of <i>n</i>;}}{l_n is the length of \eqn{n};}
\item \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a>, which counts any insertion, deletion and substitution as 1 that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function, which counts any insertion, deletion and substitution as 1 that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a> (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{<i>p<sub>n</sub></i> is the human pathogenic prevalence group of <i>n</i>, as described below;}}{p_n is the human pathogenic prevalence group of \eqn{n}, as described below;}
\item \ifelse{html}{\out{<i>k<sub>n</sub></i> is the taxonomic kingdom of <i>n</i>, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}}{l_n is the taxonomic kingdom of \eqn{n}, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}
}

View File

@ -316,7 +316,7 @@ where:
\item \ifelse{html}{\out{<i>x</i> is the user input;}}{\eqn{x} is the user input;}
\item \ifelse{html}{\out{<i>n</i> is a taxonomic name (genus, species, and subspecies);}}{\eqn{n} is a taxonomic name (genus, species, and subspecies);}
\item \ifelse{html}{\out{<i>l<sub>n</sub></i> is the length of <i>n</i>;}}{l_n is the length of \eqn{n};}
\item \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a>, which counts any insertion, deletion and substitution as 1 that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function, which counts any insertion, deletion and substitution as 1 that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{<i>lev</i> is the <a href="https://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein distance function</a> (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change <i>x</i> into <i>n</i>;}}{lev is the Levenshtein distance function (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change \eqn{x} into \eqn{n};}
\item \ifelse{html}{\out{<i>p<sub>n</sub></i> is the human pathogenic prevalence group of <i>n</i>, as described below;}}{p_n is the human pathogenic prevalence group of \eqn{n}, as described below;}
\item \ifelse{html}{\out{<i>k<sub>n</sub></i> is the taxonomic kingdom of <i>n</i>, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}}{l_n is the taxonomic kingdom of \eqn{n}, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.}
}