1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-09 21:42:01 +02:00

(v2.1.1.9159) new approach as.ab()

This commit is contained in:
2025-02-26 19:23:54 +01:00
parent 122bca0f95
commit 0c3ea4b538
18 changed files with 130 additions and 284 deletions

348
R/ab.R
View File

@ -32,6 +32,7 @@
#' Use this function to determine the antibiotic drug code of one or more antibiotics. The data set [antibiotics] will be searched for abbreviations, official names and synonyms (brand names).
#' @param x a [character] vector to determine to antibiotic ID
#' @param flag_multiple_results a [logical] to indicate whether a note should be printed to the console that probably more than one antibiotic drug code or name can be retrieved from a single input value.
#' @param language language to coerce input values from any of the `r length(LANGUAGES_SUPPORTED)` supported languages - default to the system language if supported (see [get_AMR_locale()])
#' @param info a [logical] to indicate whether a progress bar should be printed - the default is `TRUE` only in interactive mode
#' @param ... arguments passed on to internal functions
#' @rdname as.ab
@ -67,7 +68,6 @@
#' as.ab("J 01 FA 01")
#' as.ab("Erythromycin")
#' as.ab("eryt")
#' as.ab(" eryt 123")
#' as.ab("ERYT")
#' as.ab("ERY")
#' as.ab("eritromicine") # spelled wrong, yet works
@ -92,29 +92,30 @@
#' set_ab_names(where(is.sir), property = "atc")
#' }
#' }
as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
as.ab <- function(x, flag_multiple_results = TRUE, language = get_AMR_locale(), info = interactive(), ...) {
meet_criteria(x, allow_class = c("character", "numeric", "integer", "factor"), allow_NA = TRUE)
meet_criteria(flag_multiple_results, allow_class = "logical", has_length = 1)
language <- validate_language(language)
meet_criteria(info, allow_class = "logical", has_length = 1)
if (is.ab(x) || all(x %in% c(AMR_env$AB_lookup$ab, NA))) {
# all valid AB codes, but not yet right class or might have additional attributes as AMR selector
attributes(x) <- NULL
return(set_clean_class(x,
new_class = c("ab", "character")
new_class = c("ab", "character")
))
}
loop_time <- list(...)$loop_time
if (is.null(loop_time)) {
loop_time <- 1
}
already_regex <- isTRUE(list(...)$already_regex)
fast_mode <- isTRUE(list(...)$fast_mode)
x_bak <- x
x <- toupper(x)
# remove diacritics
x <- iconv(x, from = "UTF-8", to = "ASCII//TRANSLIT")
x <- gsub('"', "", x, fixed = TRUE)
@ -125,7 +126,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
if (already_regex == FALSE) {
x_bak_clean <- generalise_antibiotic_name(x_bak_clean)
}
x <- unique(x_bak_clean) # this means that every x is in fact generalise_antibiotic_name(x)
x_new <- rep(NA_character_, length(x))
x_uncertain <- character(0)
@ -152,17 +153,17 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
}
found[1L]
}
# Fill in names, AB codes, CID codes and ATC codes directly (`x` is already clean and uppercase)
known_names <- x %in% AMR_env$AB_lookup$generalised_name
x_new[known_names] <- AMR_env$AB_lookup$ab[match(x[known_names], AMR_env$AB_lookup$generalised_name)]
known_codes_ab <- x %in% AMR_env$AB_lookup$ab
known_codes_atc <- vapply(FUN.VALUE = logical(1), x, function(x_) x_ %in% unlist(AMR_env$AB_lookup$atc), USE.NAMES = FALSE)
known_codes_atc <- vapply(FUN.VALUE = logical(1), gsub(" ", "", x), function(x_) x_ %in% unlist(AMR_env$AB_lookup$atc), USE.NAMES = FALSE)
known_codes_cid <- x %in% AMR_env$AB_lookup$cid
x_new[known_codes_ab] <- AMR_env$AB_lookup$ab[match(x[known_codes_ab], AMR_env$AB_lookup$ab)]
x_new[known_codes_atc] <- AMR_env$AB_lookup$ab[vapply(
FUN.VALUE = integer(1),
x[known_codes_atc],
gsub(" ", "", x[known_codes_atc]),
function(x_) {
which(vapply(
FUN.VALUE = logical(1),
@ -182,29 +183,29 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
" for ", vector_and(prev), ". Run `ab_reset_session()` to reset this. This note will be shown once per session for this input."
)
}
already_known <- known_names | known_codes_ab | known_codes_atc | known_codes_cid | previously_coerced
# fix for NAs
x_new[is.na(x)] <- NA
already_known[is.na(x)] <- FALSE
if (loop_time == 1 && sum(already_known) < length(x)) {
progress <- progress_ticker(n = sum(!already_known), n_min = 25, print = info) # start if n >= 25
on.exit(close(progress))
}
for (i in which(!already_known)) {
if (loop_time == 1) {
progress$tick()
}
if (is.na(x[i]) || is.null(x[i])) {
next
}
if (identical(x[i], "") ||
# prevent "bacteria" from coercing to TMP, since Bacterial is a brand name of it:
identical(tolower(x[i]), "bacteria")) {
# prevent "bacteria" from coercing to TMP, since Bacterial is a brand name of it:
identical(tolower(x[i]), "bacteria")) {
x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1])
next
}
@ -215,21 +216,21 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
x_new[i] <- NA_character_
next
}
if (fast_mode == FALSE && flag_multiple_results == TRUE && x[i] %like% "[ ]") {
from_text <- tryCatch(suppressWarnings(ab_from_text(x[i], loop_time = loop_time + 1, translate_ab = FALSE)[[1]]),
error = function(e) character(0)
error = function(e) character(0)
)
} else {
from_text <- character(0)
}
# old code for phenoxymethylpenicillin (Peni V)
if (x[i] == "PNV") {
x_new[i] <- "PHN"
next
}
# exact LOINC code
loinc_found <- unlist(lapply(
AMR_env$AB_lookup$generalised_loinc,
@ -240,7 +241,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
next
}
# exact synonym
synonym_found <- unlist(lapply(
AMR_env$AB_lookup$generalised_synonyms,
@ -251,7 +252,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
next
}
# exact abbreviation
abbr_found <- unlist(lapply(
AMR_env$AB_lookup$generalised_abbreviations,
@ -263,7 +264,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
next
}
# length of input is quite long, and Levenshtein distance is only max 2
if (nchar(x[i]) >= 10) {
levenshtein <- as.double(utils::adist(x[i], AMR_env$AB_lookup$generalised_name))
@ -273,7 +274,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
next
}
}
# allow characters that resemble others, but only continue when having more than 3 characters
if (nchar(x[i]) <= 3) {
x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1])
@ -303,20 +304,22 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
x_spelling <- gsub("(O|0)", "(O|0)+", x_spelling, perl = TRUE)
x_spelling <- gsub("++", "+", x_spelling, fixed = TRUE)
}
# try if name starts with it
found <- AMR_env$AB_lookup[which(AMR_env$AB_lookup$generalised_name %like% paste0("^", x_spelling)), "ab", drop = TRUE]
if (length(found) > 0) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
next
}
# try if name ends with it
found <- AMR_env$AB_lookup[which(AMR_env$AB_lookup$generalised_name %like% paste0(x_spelling, "$")), "ab", drop = TRUE]
if (nchar(x[i]) >= 4 && length(found) > 0) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
next
}
# and try if any synonym starts with it
synonym_found <- unlist(lapply(
AMR_env$AB_lookup$generalised_synonyms,
@ -327,244 +330,71 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
next
}
# INITIAL SEARCH - More uncertain results ----
if (loop_time <= 2 && fast_mode == FALSE) {
if (loop_time == 1 && fast_mode == FALSE) {
# only run on first and second try
# base on the Levensthein distance function if length >= 6
if (nchar(x[i]) >= 6) {
l_dist <- as.double(utils::adist(x[i], AMR_env$AB_lookup$generalised_name,
ignore.case = FALSE,
fixed = TRUE,
costs = c(insertions = 1, deletions = 2, substitutions = 2),
counts = FALSE))
x_new[i] <- AMR_env$AB_lookup$ab[order(l_dist)][1]
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# try by removing all spaces
if (x[i] %like% " ") {
found <- suppressWarnings(as.ab(gsub(" +", "", x[i], perl = TRUE), loop_time = loop_time + 2))
if (length(found) > 0 && !is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
}
# try by removing all spaces and numbers
if (x[i] %like% " " || x[i] %like% "[0-9]") {
found <- suppressWarnings(as.ab(gsub("[ 0-9]", "", x[i], perl = TRUE), loop_time = loop_time + 2))
if (length(found) > 0 && !is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
}
# reverse a combination, e.g. clavulanic acid/amoxicillin
if (x[i] %like% " ") {
split <- strsplit(x[i], " ")[[1]]
permute <- function(x) {
if (length(x) == 1) return(list(x))
result <- vector("list", factorial(length(x)))
index <- 1
for (i in seq_along(x)) {
sub_perms <- permute(x[-i]) # Recursively get permutations of remaining elements
for (sub in sub_perms) {
result[[index]] <- c(x[i], sub)
index <- index + 1
}
}
return(result)
}
permutations <- permute(split)
found_perms <- character(length(permutations))
for (s in seq_len(length(permutations))) {
concat <- paste0(permutations[[s]], collapse = " ")
if (concat %in% AMR_env$AB_lookup$generalised_name) {
found_perms[s] <- AMR_env$AB_lookup[which(AMR_env$AB_lookup$generalised_name == concat), "ab", drop = TRUE]
} else {
found_perms[s] <- suppressWarnings(as.ab(concat, loop_time = loop_time + 2))
}
}
found_perms <- found_perms[!is.na(found_perms)]
if (length(found_perms) > 0) {
found <- found_perms[order(nchar(found_perms), decreasing = TRUE)][1]
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
}
# transform back from other languages and try again
x_translated <- paste(
lapply(
strsplit(x[i], "[^A-Z0-9]"),
function(y) {
for (i in seq_len(length(y))) {
for (lang in LANGUAGES_SUPPORTED[LANGUAGES_SUPPORTED != "en"]) {
y[i] <- ifelse(tolower(y[i]) %in% tolower(TRANSLATIONS[, lang, drop = TRUE]),
TRANSLATIONS[which(tolower(TRANSLATIONS[, lang, drop = TRUE]) == tolower(y[i]) &
!isFALSE(TRANSLATIONS$fixed)), "pattern"],
y[i]
)
}
}
generalise_antibiotic_name(y)
}
)[[1]],
collapse = "/"
)
x_translated_guess <- suppressWarnings(as.ab(x_translated, loop_time = loop_time + 2))
if (!is.na(x_translated_guess)) {
x_new[i] <- x_translated_guess
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# now also try to coerce brandname combinations like "Amoxy/clavulanic acid"
x_translated <- paste(
lapply(
strsplit(x_translated, "[^A-Z0-9 ]"),
function(y) {
for (i in seq_len(length(y))) {
y_name <- suppressWarnings(ab_name(y[i], language = NULL, loop_time = loop_time + 2))
y[i] <- ifelse(!is.na(y_name),
y_name,
y[i]
)
}
generalise_antibiotic_name(y)
}
)[[1]],
collapse = "/"
)
x_translated_guess <- suppressWarnings(as.ab(x_translated, loop_time = loop_time + 2))
if (!is.na(x_translated_guess)) {
x_new[i] <- x_translated_guess
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# try by removing all trailing capitals
if (x[i] %like_case% "[a-z]+[A-Z]+$") {
found <- suppressWarnings(as.ab(gsub("[A-Z]+$", "", x[i], perl = TRUE), loop_time = loop_time + 2))
if (!is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
}
# keep only letters
found <- suppressWarnings(as.ab(gsub("[^A-Z]", "", x[i], perl = TRUE), loop_time = loop_time + 2))
if (!is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# try from a bigger text, like from a health care record, see ?ab_from_text
# already calculated above if flag_multiple_results = TRUE
if (flag_multiple_results == TRUE) {
found <- from_text[1L]
ab_df <- AMR_env$AB_lookup
ab_df$length_name <- nchar(ab_df$generalised_name)
# now retrieve Levensthein distance for name, synonyms, and translated names
ab_df$lev_name <- as.double(utils::adist(x[i], ab_df$generalised_name,
ignore.case = FALSE,
fixed = TRUE,
costs = c(insertions = 1, deletions = 1, substitutions = 2),
counts = FALSE))
ab_df$lev_syn <- vapply(FUN.VALUE = double(1),
ab_df$generalised_synonyms,
function(y) ifelse(length(y[nchar(y) >= 5]) == 0,
999,
min(as.double(utils::adist(x[i], y[nchar(y) >= 5], ignore.case = FALSE,
fixed = TRUE,
costs = c(insertions = 1, deletions = 1, substitutions = 2),
counts = FALSE)), na.rm = TRUE)),
USE.NAMES = FALSE)
if (!is.null(language) && language != "en") {
ab_df$trans <- generalise_antibiotic_name(translate_AMR(ab_df$name, language = language))
ab_df$lev_trans <- as.double(utils::adist(x[i], ab_df$trans,
ignore.case = FALSE,
fixed = TRUE,
costs = c(insertions = 1, deletions = 1, substitutions = 2),
counts = FALSE))
} else {
found <- tryCatch(suppressWarnings(ab_from_text(x[i], loop_time = loop_time + 2, translate_ab = FALSE)[[1]][1L]),
error = function(e) NA_character_
)
ab_df$lev_trans <- ab_df$lev_name
}
if (!is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
if (any(ab_df$lev_name < 5, na.rm = TRUE)) {
x_new[i] <- ab_df$ab[order(ab_df$lev_name)][1]
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# first 5 except for cephalosporins, then first 7 (those cephalosporins all start quite the same!)
found <- suppressWarnings(as.ab(substr(x[i], 1, 5), loop_time = loop_time + 2))
if (!is.na(found) && ab_group(found, loop_time = loop_time + 1) %unlike% "cephalosporins") {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
next
}
found <- suppressWarnings(as.ab(substr(x[i], 1, 7), loop_time = loop_time + 2))
if (!is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
} else if (any(ab_df$lev_trans < 5, na.rm = TRUE)) {
x_new[i] <- ab_df$ab[order(ab_df$lev_trans)][1]
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# make all consonants facultative
search_str <- gsub("([BCDFGHJKLMNPQRSTVWXZ])", "\\1*", x[i], perl = TRUE)
found <- suppressWarnings(as.ab(search_str, loop_time = loop_time + 2, already_regex = TRUE))
# keep at least 4 normal characters
if (nchar(gsub(".\\*", "", search_str, perl = TRUE)) < 4) {
found <- NA
}
if (!is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
} else if (any(ab_df$lev_syn < 5, na.rm = TRUE)) {
x_new[i] <- ab_df$ab[order(ab_df$lev_syn)][1]
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# make all vowels facultative
search_str <- gsub("([AEIOUY])", "\\1*", x[i], perl = TRUE)
found <- suppressWarnings(as.ab(search_str, loop_time = loop_time + 2, already_regex = TRUE))
# keep at least 5 normal characters
if (nchar(gsub(".\\*", "", search_str, perl = TRUE)) < 5) {
found <- NA
}
if (!is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# allow misspelling of vowels
x_spelling <- gsub("A+", "[AEIOU]+", x_spelling, fixed = TRUE)
x_spelling <- gsub("E+", "[AEIOU]+", x_spelling, fixed = TRUE)
x_spelling <- gsub("I+", "[AEIOU]+", x_spelling, fixed = TRUE)
x_spelling <- gsub("O+", "[AEIOU]+", x_spelling, fixed = TRUE)
x_spelling <- gsub("U+", "[AEIOU]+", x_spelling, fixed = TRUE)
found <- suppressWarnings(as.ab(x_spelling, loop_time = loop_time + 2, already_regex = TRUE))
if (!is.na(found)) {
x_new[i] <- note_if_more_than_one_found(found, i, from_text)
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
# try with switched character, like "mreopenem"
for (j in seq_len(nchar(x[i]))) {
x_switched <- paste0(
# beginning part:
substr(x[i], 1, j - 1),
# here is the switching of 2 characters:
substr(x[i], j + 1, j + 1),
substr(x[i], j, j),
# ending part:
substr(x[i], j + 2, nchar(x[i]))
)
found <- suppressWarnings(as.ab(x_switched, loop_time = loop_time + 1))
if (!is.na(found)) {
break
} else {
# then just take name if Levensthein is max 100% of length of name
ab_df$lev_len_ratio <- ab_df$lev_name / ab_df$length_name
if (any(ab_df$lev_len_ratio < 1)) {
ab_df <- ab_df[ab_df$lev_len_ratio < 1, , drop = FALSE]
x_new[i] <- ab_df$ab[order(ab_df$lev_name)][1]
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
}
if (!is.na(found)) {
x_new[i] <- found[1L]
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
next
}
} # end of loop_time <= 2
# not found
}
# nothing found
x_unknown <- c(x_unknown, x_bak[x[i] == x_bak_clean][1])
}
if (loop_time == 1 && sum(already_known) < length(x)) {
close(progress)
}
# save to package env to save time for next time
if (loop_time == 1) {
AMR_env$ab_previously_coerced <- AMR_env$ab_previously_coerced[which(!AMR_env$ab_previously_coerced$x %in% x), , drop = FALSE]
@ -578,7 +408,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
)
))
}
# take failed ATC codes apart from rest
if (length(x_unknown_ATCs) > 0 && fast_mode == FALSE) {
warning_(
@ -619,14 +449,14 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
". If required, use `add_custom_antimicrobials()` to add custom entries.")
}
}
x_result <- x_new[match(x_bak_clean, x)]
if (length(x_result) == 0) {
x_result <- NA_character_
}
set_clean_class(x_result,
new_class = c("ab", "character")
new_class = c("ab", "character")
)
}
@ -767,16 +597,20 @@ generalise_antibiotic_name <- function(x) {
x <- gsub("[^A-Z0-9 -)(]", "/", x, perl = TRUE)
# correct for 'high level' antibiotics
x <- trimws(gsub("([^A-Z0-9/ -]+)?(HIGH(.?LE?VE?L)?|[^A-Z0-9/]H[^A-Z0-9]?L)([^A-Z0-9 -]+)?", "-HIGH", x, perl = TRUE))
x <- trimws(gsub("^(-HIGH)(.*)", "\\2\\1", x))
x <- trimws(gsub("^(-HIGH)(.*)", "\\2\\1", x, perl = TRUE))
# remove part between brackets if that's followed by another string
x <- gsub("(.*)+ [(].*[)]", "\\1", x)
# spaces around non-characters must be removed: amox + clav -> amox/clav
# spaces around non-characters must be removed: amox + clav -> amox clav
x <- gsub("(.*[A-Z0-9]) ([^A-Z0-9].*)", "\\1\\2", x, perl = TRUE)
x <- gsub("(.*[^A-Z0-9]) ([A-Z0-9].*)", "\\1\\2", x, perl = TRUE)
# remove hyphen after a starting "co"
x <- gsub("^CO-", "CO", x, perl = TRUE)
# replace operators with a space
x <- gsub("(/| AND | WITH | W/|[+]|[-])+", " ", x, perl = TRUE)
# replace more than 1 space
x <- trimws(gsub(" +", " ", x, perl = TRUE))
# move HIGH to end
x <- trimws(gsub("(.*) HIGH(.*)", "\\1\\2 HIGH", x, perl = TRUE))
x
}
@ -789,9 +623,9 @@ get_translate_ab <- function(translate_ab) {
} else {
translate_ab <- tolower(translate_ab)
stop_ifnot(translate_ab %in% colnames(AMR::antibiotics),
"invalid value for 'translate_ab', this must be a column name of the antibiotics data set\n",
"or TRUE (equals 'name') or FALSE to not translate at all.",
call = FALSE
"invalid value for 'translate_ab', this must be a column name of the antibiotics data set\n",
"or TRUE (equals 'name') or FALSE to not translate at all.",
call = FALSE
)
translate_ab
}