1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-21 12:13:20 +02:00
This commit is contained in:
2018-02-22 21:37:10 +01:00
parent d8da8daf9a
commit 10380bcfae
4 changed files with 117 additions and 58 deletions

View File

@ -40,14 +40,37 @@ library(AMR)
# For a list of functions:
help(package = "AMR")
```
### Databases included in package
### Overwrite/force resistance based on EUCAST rules
This is also called *interpretive reading*.
```r
# Dataset with ATC antibiotics codes, official names and DDD's (oral and parenteral)
ablist # A tibble: 420 x 12
before <- data.frame(bactid = c("STAAUR", # Staphylococcus aureus
"ENCFAE" # Enterococcus faecalis
"ESCCOL", # Escherichia coli
"KLEPNE", # Klebsiella pneumoniae
"PSEAER"), # Pseudomonas aeruginosa
vanc = "-", # Vancomycin
amox = "-", # Amoxicillin
coli = "-", # Colistin
cfta = "-", # Ceftazidime
cfur = "-", # Cefuroxime
stringsAsFactors = FALSE)
before
# bactid vanc amox coli cfta cfur
# 1 STAAUR - - - - -
# 2 ENCFAE - - - - -
# 3 ESCCOL - - - - -
# 4 KLEPNE - - - - -
# 5 PSEAER - - - - -
# Dataset with bacteria codes and properties like gram stain and aerobic/anaerobic
bactlist # A tibble: 2,507 x 10
# Now apply those rules; just need a column with bacteria ID's and antibiotic results:
after <- EUCAST_rules(before)
after
# bactid vanc amox coli cfta cfur
# 1 STAAUR - - R R -
# 2 ENCFAE - - R R R
# 3 ESCCOL R - - - -
# 4 KLEPNE R R - - -
# 5 PSEAER R R - - R
```
### New classes
@ -94,18 +117,13 @@ plot(rsi_data)
Other epidemiological functions:
```r
# Apply EUCAST Expert Rules v3.1 (latest) to antibiotic columns
EUCAST_rules(...)
# Determine key antibiotic based on bacteria ID
key_antibiotics(...)
# Check if key antibiotics are equal
key_antibiotics_equal(...)
# Selection of first isolates of any patient
first_isolate(...)
# Calculate resistance levels of antibiotics
# Calculate resistance levels of antibiotics, can be used with `summarise` (dplyr)
rsi(...)
# Predict resistance levels of antibiotics
rsi_predict(...)
@ -115,6 +133,17 @@ abname(...)
abname("J01CR02", from = "atc", to = "umcg") # "AMCL"
```
### Databases included in package
Datasets to work with antibiotics and bacteria properties.
```r
# Dataset with ATC antibiotics codes, official names and DDD's (oral and parenteral)
ablist # A tibble: 420 x 12
# Dataset with bacteria codes and properties like gram stain and aerobic/anaerobic
bactlist # A tibble: 2,507 x 10
```
## Authors
- [Berends MS](https://github.com/msberends)<sup>1,2</sup>, PhD Student