mirror of
https://github.com/msberends/AMR.git
synced 2025-01-30 17:44:36 +01:00
(v2.1.1.9129) unit test fix
This commit is contained in:
parent
6efa317a81
commit
1149360b27
@ -1,5 +1,5 @@
|
||||
Package: AMR
|
||||
Version: 2.1.1.9128
|
||||
Version: 2.1.1.9129
|
||||
Date: 2025-01-27
|
||||
Title: Antimicrobial Resistance Data Analysis
|
||||
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
||||
@ -46,6 +46,7 @@ Suggests:
|
||||
rmarkdown,
|
||||
rvest,
|
||||
skimr,
|
||||
testthat,
|
||||
tibble,
|
||||
tidymodels,
|
||||
tidyselect,
|
||||
|
2
NEWS.md
2
NEWS.md
@ -1,4 +1,4 @@
|
||||
# AMR 2.1.1.9128
|
||||
# AMR 2.1.1.9129
|
||||
|
||||
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)*
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.2
|
||||
Name: AMR
|
||||
Version: 2.1.1.9128
|
||||
Version: 2.1.1.9129
|
||||
Summary: A Python wrapper for the AMR R package
|
||||
Home-page: https://github.com/msberends/AMR
|
||||
Author: Matthijs Berends
|
||||
|
@ -1,7 +1,3 @@
|
||||
BLUE = '\033[94m'
|
||||
GREEN = '\033[32m'
|
||||
RESET = '\033[0m'
|
||||
|
||||
import os
|
||||
import sys
|
||||
from rpy2 import robjects
|
||||
@ -17,18 +13,22 @@ venv_path = sys.prefix
|
||||
r_lib_path = os.path.join(venv_path, "R_libs")
|
||||
# Ensure the R library path exists
|
||||
os.makedirs(r_lib_path, exist_ok=True)
|
||||
# Set the R library path in .libPaths
|
||||
base = importr('base')
|
||||
# Turn off warnings
|
||||
base.options(warn = -1)
|
||||
|
||||
base._libPaths(r_lib_path)
|
||||
# Import base and utils
|
||||
base = importr('base')
|
||||
utils = importr('utils')
|
||||
|
||||
# Override R library paths globally for the session
|
||||
robjects.r(f'.Library <- "{r_lib_path}"') # Replace default library
|
||||
robjects.r(f'.Library.site <- "{r_lib_path}"') # Replace site-specific library
|
||||
base._libPaths(r_lib_path) # Override .libPaths() as well
|
||||
|
||||
# Get the effective library path
|
||||
r_amr_lib_path = base._libPaths()[0]
|
||||
|
||||
# Check if the AMR package is installed in R
|
||||
if not isinstalled('AMR', lib_loc = r_amr_lib_path):
|
||||
utils = importr('utils')
|
||||
print(f"{BLUE}AMR:{RESET} Installing AMR package to {BLUE}{r_amr_lib_path}/{RESET}...", flush=True)
|
||||
if not isinstalled('AMR', lib_loc=r_amr_lib_path):
|
||||
print(f"AMR: Installing latest AMR R package to {r_amr_lib_path}...", flush=True)
|
||||
utils.install_packages('AMR', repos='https://msberends.r-universe.dev', quiet=True)
|
||||
|
||||
# Python package version of AMR
|
||||
@ -43,16 +43,12 @@ r_amr_version = robjects.r(f'as.character(packageVersion("AMR", lib.loc = "{r_li
|
||||
# Compare R and Python package versions
|
||||
if r_amr_version != python_amr_version:
|
||||
try:
|
||||
print(f"{BLUE}AMR:{RESET} Updating AMR package in {BLUE}{r_amr_lib_path}/{RESET}...", flush=True)
|
||||
utils = importr('utils')
|
||||
print(f"AMR: Updating AMR package in {r_amr_lib_path}...", flush=True)
|
||||
utils.install_packages('AMR', repos='https://msberends.r-universe.dev', quiet=True)
|
||||
except Exception as e:
|
||||
print(f"{BLUE}AMR:{RESET} Could not update: {e}{RESET}", flush=True)
|
||||
print(f"AMR: Could not update: {e}", flush=True)
|
||||
|
||||
# Restore warnings to default
|
||||
base.options(warn = 0)
|
||||
|
||||
print(f"{BLUE}AMR:{RESET} Setting up R environment and AMR datasets...", flush=True)
|
||||
print(f"AMR: Setting up R environment and AMR datasets...", flush=True)
|
||||
|
||||
# Activate the automatic conversion between R and pandas DataFrames
|
||||
pandas2ri.activate()
|
||||
@ -77,4 +73,4 @@ microorganisms = pandas2ri.rpy2py(robjects.r('AMR::microorganisms[, !sapply(AMR:
|
||||
antibiotics = pandas2ri.rpy2py(robjects.r('AMR::antibiotics[, !sapply(AMR::antibiotics, is.list)]'))
|
||||
clinical_breakpoints = pandas2ri.rpy2py(robjects.r('AMR::clinical_breakpoints[, !sapply(AMR::clinical_breakpoints, is.list)]'))
|
||||
|
||||
print(f"{BLUE}AMR:{RESET} {GREEN}Done.{RESET}", flush=True)
|
||||
print(f"AMR: Done.", flush=True)
|
||||
|
Binary file not shown.
BIN
PythonPackage/AMR/dist/AMR-2.1.1.9129-py3-none-any.whl
vendored
Normal file
BIN
PythonPackage/AMR/dist/AMR-2.1.1.9129-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
PythonPackage/AMR/dist/amr-2.1.1.9128.tar.gz
vendored
BIN
PythonPackage/AMR/dist/amr-2.1.1.9128.tar.gz
vendored
Binary file not shown.
BIN
PythonPackage/AMR/dist/amr-2.1.1.9129.tar.gz
vendored
Normal file
BIN
PythonPackage/AMR/dist/amr-2.1.1.9129.tar.gz
vendored
Normal file
Binary file not shown.
@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='AMR',
|
||||
version='2.1.1.9128',
|
||||
version='2.1.1.9129',
|
||||
packages=find_packages(),
|
||||
install_requires=[
|
||||
'rpy2',
|
||||
|
@ -165,6 +165,7 @@ globalVariables(c(
|
||||
"lang",
|
||||
"language",
|
||||
"lookup",
|
||||
"lower",
|
||||
"method",
|
||||
"mic ",
|
||||
"mic",
|
||||
@ -198,6 +199,7 @@ globalVariables(c(
|
||||
"total",
|
||||
"txt",
|
||||
"type",
|
||||
"upper",
|
||||
"uti_index",
|
||||
"value",
|
||||
"varname",
|
||||
|
@ -60,7 +60,7 @@
|
||||
#'
|
||||
#' For estimating antimicrobial coverage, especially when creating a WISCA, the outcome might become more reliable by only including the top *n* species encountered in the data. You can filter on this top *n* using [top_n_microorganisms()]. For example, use `top_n_microorganisms(your_data, n = 10)` as a pre-processing step to only include the top 10 species in the data.
|
||||
#'
|
||||
#' The numeric values of an antibiogram are stored in a long format as the [attribute] `long_numeric`. You can retrieve them using `attributes(x)$long_numeric`, where `x` is the outcome of [antibiogram()] or [wisca()]. This is ideal for e.g. advanced plotting.
|
||||
#' The numeric values of an antibiogram are stored in a long format as the [attribute][attributes()] `long_numeric`. You can retrieve them using `attributes(x)$long_numeric`, where `x` is the outcome of [antibiogram()] or [wisca()]. This is ideal for e.g. advanced plotting.
|
||||
#'
|
||||
#' ### Formatting Type
|
||||
#'
|
||||
|
@ -36,6 +36,7 @@
|
||||
#' @param remove_intrinsic_resistant [logical] to indicate that rows and columns with 100% resistance for all tested antimicrobials must be removed from the table
|
||||
#' @param FUN the function to call on the `mo` column to transform the microorganism codes - the default is [mo_shortname()]
|
||||
#' @param translate_ab a [character] of length 1 containing column names of the [antibiotics] data set
|
||||
#' @param include_n_rows a [logical] to indicate if the total number of rows must be included in the output
|
||||
#' @param ... arguments passed on to `FUN`
|
||||
#' @inheritParams sir_df
|
||||
#' @inheritParams base::formatC
|
||||
@ -182,8 +183,8 @@ bug_drug_combinations <- function(x,
|
||||
out <- out[, colnames(out)[colnames(out) != "total_rows"], drop = FALSE]
|
||||
}
|
||||
|
||||
out <- out %pm>% pm_arrange(mo, ab)
|
||||
out <- as_original_data_class(out, class(x.bak)) # will remove tibble groups
|
||||
out <- out %pm>% pm_arrange(mo, ab)
|
||||
rownames(out) <- NULL
|
||||
structure(out, class = c("bug_drug_combinations", if(data_has_groups) "grouped" else NULL, class(out)))
|
||||
}
|
||||
|
@ -261,7 +261,7 @@ ggplot_pca <- function(x,
|
||||
type = "open"
|
||||
),
|
||||
colour = arrows_colour,
|
||||
size = arrows_size,
|
||||
linewidth = arrows_size,
|
||||
alpha = arrows_alpha
|
||||
)
|
||||
if (arrows_textangled == TRUE) {
|
||||
|
@ -36,7 +36,7 @@
|
||||
#' @param n_for_each an optional integer specifying the maximum number of rows to retain for each value of the selected property. If `NULL`, all rows within the top *n* groups will be included.
|
||||
#' @param col_mo A character string indicating the column in `x` that contains microorganism names or codes. Defaults to the first column of class [`mo`]. Values will be coerced using [as.mo()].
|
||||
#' @param ... Additional arguments passed on to [mo_property()] when `property` is not `NULL`.
|
||||
#' @details This function is useful for preprocessing data before creating [antibiograms][antibiograms()] or other analyses that require focused subsets of microbial data. For example, it can filter a data set to only include isolates from the top 10 species.
|
||||
#' @details This function is useful for preprocessing data before creating [antibiograms][antibiogram()] or other analyses that require focused subsets of microbial data. For example, it can filter a data set to only include isolates from the top 10 species.
|
||||
#' @export
|
||||
#' @seealso [mo_property()], [as.mo()], [antibiogram()]
|
||||
#' @examples
|
||||
|
@ -42,10 +42,6 @@ description_file="../DESCRIPTION"
|
||||
|
||||
# Write header to the datasets Python file, including the convert_to_python function
|
||||
cat <<EOL > "$datasets_file"
|
||||
BLUE = '\033[94m'
|
||||
GREEN = '\033[32m'
|
||||
RESET = '\033[0m'
|
||||
|
||||
import os
|
||||
import sys
|
||||
from rpy2 import robjects
|
||||
@ -61,18 +57,22 @@ venv_path = sys.prefix
|
||||
r_lib_path = os.path.join(venv_path, "R_libs")
|
||||
# Ensure the R library path exists
|
||||
os.makedirs(r_lib_path, exist_ok=True)
|
||||
# Set the R library path in .libPaths
|
||||
base = importr('base')
|
||||
# Turn off warnings
|
||||
base.options(warn = -1)
|
||||
|
||||
base._libPaths(r_lib_path)
|
||||
# Import base and utils
|
||||
base = importr('base')
|
||||
utils = importr('utils')
|
||||
|
||||
# Override R library paths globally for the session
|
||||
robjects.r(f'.Library <- "{r_lib_path}"') # Replace default library
|
||||
robjects.r(f'.Library.site <- "{r_lib_path}"') # Replace site-specific library
|
||||
base._libPaths(r_lib_path) # Override .libPaths() as well
|
||||
|
||||
# Get the effective library path
|
||||
r_amr_lib_path = base._libPaths()[0]
|
||||
|
||||
# Check if the AMR package is installed in R
|
||||
if not isinstalled('AMR', lib_loc = r_amr_lib_path):
|
||||
utils = importr('utils')
|
||||
print(f"{BLUE}AMR:{RESET} Installing AMR package to {BLUE}{r_amr_lib_path}/{RESET}...", flush=True)
|
||||
if not isinstalled('AMR', lib_loc=r_amr_lib_path):
|
||||
print(f"AMR: Installing latest AMR R package to {r_amr_lib_path}...", flush=True)
|
||||
utils.install_packages('AMR', repos='https://msberends.r-universe.dev', quiet=True)
|
||||
|
||||
# Python package version of AMR
|
||||
@ -87,16 +87,12 @@ r_amr_version = robjects.r(f'as.character(packageVersion("AMR", lib.loc = "{r_li
|
||||
# Compare R and Python package versions
|
||||
if r_amr_version != python_amr_version:
|
||||
try:
|
||||
print(f"{BLUE}AMR:{RESET} Updating AMR package in {BLUE}{r_amr_lib_path}/{RESET}...", flush=True)
|
||||
utils = importr('utils')
|
||||
print(f"AMR: Updating AMR package in {r_amr_lib_path}...", flush=True)
|
||||
utils.install_packages('AMR', repos='https://msberends.r-universe.dev', quiet=True)
|
||||
except Exception as e:
|
||||
print(f"{BLUE}AMR:{RESET} Could not update: {e}{RESET}", flush=True)
|
||||
print(f"AMR: Could not update: {e}", flush=True)
|
||||
|
||||
# Restore warnings to default
|
||||
base.options(warn = 0)
|
||||
|
||||
print(f"{BLUE}AMR:{RESET} Setting up R environment and AMR datasets...", flush=True)
|
||||
print(f"AMR: Setting up R environment and AMR datasets...", flush=True)
|
||||
|
||||
# Activate the automatic conversion between R and pandas DataFrames
|
||||
pandas2ri.activate()
|
||||
@ -121,7 +117,7 @@ microorganisms = pandas2ri.rpy2py(robjects.r('AMR::microorganisms[, !sapply(AMR:
|
||||
antibiotics = pandas2ri.rpy2py(robjects.r('AMR::antibiotics[, !sapply(AMR::antibiotics, is.list)]'))
|
||||
clinical_breakpoints = pandas2ri.rpy2py(robjects.r('AMR::clinical_breakpoints[, !sapply(AMR::clinical_breakpoints, is.list)]'))
|
||||
|
||||
print(f"{BLUE}AMR:{RESET} {GREEN}Done.{RESET}", flush=True)
|
||||
print(f"AMR: Done.", flush=True)
|
||||
EOL
|
||||
|
||||
echo "from .datasets import example_isolates" >> $init_file
|
||||
|
@ -1,5 +1,5 @@
|
||||
This files contains all context you must know about the AMR package for R.
|
||||
First and foremost, you are trained on version 2.1.1.9128. Remember this whenever someone asks which AMR package version you’re at.
|
||||
First and foremost, you are trained on version 2.1.1.9129. Remember this whenever someone asks which AMR package version you’re at.
|
||||
--------------------------------
|
||||
|
||||
THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE':
|
||||
@ -1705,7 +1705,7 @@ This function returns a table with values between 0 and 100 for \emph{susceptibi
|
||||
|
||||
For estimating antimicrobial coverage, especially when creating a WISCA, the outcome might become more reliable by only including the top \emph{n} species encountered in the data. You can filter on this top \emph{n} using \code{\link[=top_n_microorganisms]{top_n_microorganisms()}}. For example, use \code{top_n_microorganisms(your_data, n = 10)} as a pre-processing step to only include the top 10 species in the data.
|
||||
|
||||
The numeric values of an antibiogram are stored in a long format as the \link{attribute} \code{long_numeric}. You can retrieve them using \code{attributes(x)$long_numeric}, where \code{x} is the outcome of \code{\link[=antibiogram]{antibiogram()}} or \code{\link[=wisca]{wisca()}}. This is ideal for e.g. advanced plotting.
|
||||
The numeric values of an antibiogram are stored in a long format as the \link[=attributes]{attribute} \code{long_numeric}. You can retrieve them using \code{attributes(x)$long_numeric}, where \code{x} is the outcome of \code{\link[=antibiogram]{antibiogram()}} or \code{\link[=wisca]{wisca()}}. This is ideal for e.g. advanced plotting.
|
||||
\subsection{Formatting Type}{
|
||||
|
||||
The formatting of the 'cells' of the table can be set with the argument \code{formatting_type}. In these examples, \code{5} is the susceptibility percentage (for WISCA: \code{4-6} indicates the confidence level), \code{15} the numerator, and \code{300} the denominator:
|
||||
@ -3900,6 +3900,8 @@ bug_drug_combinations(x, col_mo = NULL, FUN = mo_shortname,
|
||||
|
||||
\item{FUN}{the function to call on the \code{mo} column to transform the microorganism codes - the default is \code{\link[=mo_shortname]{mo_shortname()}}}
|
||||
|
||||
\item{include_n_rows}{a \link{logical} to indicate if the total number of rows must be included in the output}
|
||||
|
||||
\item{...}{arguments passed on to \code{FUN}}
|
||||
|
||||
\item{translate_ab}{a \link{character} of length 1 containing column names of the \link{antibiotics} data set}
|
||||
@ -8027,7 +8029,7 @@ top_n_microorganisms(x, n, property = "fullname", n_for_each = NULL,
|
||||
This function filters a data set to include only the top \emph{n} microorganisms based on a specified property, such as taxonomic family or genus. For example, it can filter a data set to the top 3 species, or to any species in the top 5 genera, or to the top 3 species in each of the top 5 genera.
|
||||
}
|
||||
\details{
|
||||
This function is useful for preprocessing data before creating \link[=antibiograms]{antibiograms} or other analyses that require focused subsets of microbial data. For example, it can filter a data set to only include isolates from the top 10 species.
|
||||
This function is useful for preprocessing data before creating \link[=antibiogram]{antibiograms} or other analyses that require focused subsets of microbial data. For example, it can filter a data set to only include isolates from the top 10 species.
|
||||
}
|
||||
\examples{
|
||||
# filter to the top 3 species:
|
@ -2210,6 +2210,6 @@ devtools::load_all(".")
|
||||
|
||||
# run the unit tests
|
||||
Sys.setenv(NOT_CRAN = "true")
|
||||
testthat::test_file("inst/tinytest/test-data.R")
|
||||
testthat::test_file("inst/tinytest/test-mo.R")
|
||||
testthat::test_file("inst/tinytest/test-mo_property.R")
|
||||
testthat::test_file("inst/tests/testthat/test-data.R")
|
||||
testthat::test_file("inst/tests/testthat/test-mo.R")
|
||||
testthat::test_file("inst/tests/testthat/test-mo_property.R")
|
||||
|
@ -27,6 +27,15 @@
|
||||
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
||||
# ==================================================================== #
|
||||
|
||||
tryCatch(!is.function(expect_stout), error = function(e) TRUE) {
|
||||
expect_stout <<- testthat::expect_output
|
||||
}
|
||||
tryCatch(!is.function(expect_inherits), error = function(e) TRUE) {
|
||||
expect_inherits <<- function(x, y, ...) testthat::expect(inherits(x, y),
|
||||
failure_message = paste0("Expected class ", paste(y, collapse = "/"),
|
||||
", got class ", paste(class(x), collapse = "/")))
|
||||
}
|
||||
|
||||
expect_equal(AMR:::percentage(0.25), "25%")
|
||||
expect_equal(AMR:::percentage(0.5), "50%")
|
||||
expect_equal(AMR:::percentage(0.500, digits = 1), "50.0%")
|
@ -44,12 +44,14 @@ if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0", also_load = TRUE) &&
|
||||
as.double()
|
||||
)
|
||||
|
||||
expect_stdout(print(example_isolates %>%
|
||||
select(AMC, CIP) %>%
|
||||
ggplot_sir(x = "interpretation", facet = "antibiotic")))
|
||||
expect_stdout(print(example_isolates %>%
|
||||
select(AMC, CIP) %>%
|
||||
ggplot_sir(x = "antibiotic", facet = "interpretation")))
|
||||
expect_inherits(example_isolates %>%
|
||||
select(AMC, CIP) %>%
|
||||
ggplot_sir(x = "interpretation", facet = "antibiotic"),
|
||||
"gg")
|
||||
expect_inherits(example_isolates %>%
|
||||
select(AMC, CIP) %>%
|
||||
ggplot_sir(x = "antibiotic", facet = "interpretation"),
|
||||
"gg")
|
||||
|
||||
expect_equal(
|
||||
(example_isolates %>%
|
@ -100,7 +100,7 @@ This function returns a table with values between 0 and 100 for \emph{susceptibi
|
||||
|
||||
For estimating antimicrobial coverage, especially when creating a WISCA, the outcome might become more reliable by only including the top \emph{n} species encountered in the data. You can filter on this top \emph{n} using \code{\link[=top_n_microorganisms]{top_n_microorganisms()}}. For example, use \code{top_n_microorganisms(your_data, n = 10)} as a pre-processing step to only include the top 10 species in the data.
|
||||
|
||||
The numeric values of an antibiogram are stored in a long format as the \link{attribute} \code{long_numeric}. You can retrieve them using \code{attributes(x)$long_numeric}, where \code{x} is the outcome of \code{\link[=antibiogram]{antibiogram()}} or \code{\link[=wisca]{wisca()}}. This is ideal for e.g. advanced plotting.
|
||||
The numeric values of an antibiogram are stored in a long format as the \link[=attributes]{attribute} \code{long_numeric}. You can retrieve them using \code{attributes(x)$long_numeric}, where \code{x} is the outcome of \code{\link[=antibiogram]{antibiogram()}} or \code{\link[=wisca]{wisca()}}. This is ideal for e.g. advanced plotting.
|
||||
\subsection{Formatting Type}{
|
||||
|
||||
The formatting of the 'cells' of the table can be set with the argument \code{formatting_type}. In these examples, \code{5} is the susceptibility percentage (for WISCA: \code{4-6} indicates the confidence level), \code{15} the numerator, and \code{300} the denominator:
|
||||
|
@ -21,6 +21,8 @@ bug_drug_combinations(x, col_mo = NULL, FUN = mo_shortname,
|
||||
|
||||
\item{FUN}{the function to call on the \code{mo} column to transform the microorganism codes - the default is \code{\link[=mo_shortname]{mo_shortname()}}}
|
||||
|
||||
\item{include_n_rows}{a \link{logical} to indicate if the total number of rows must be included in the output}
|
||||
|
||||
\item{...}{arguments passed on to \code{FUN}}
|
||||
|
||||
\item{translate_ab}{a \link{character} of length 1 containing column names of the \link{antibiotics} data set}
|
||||
|
@ -24,7 +24,7 @@ top_n_microorganisms(x, n, property = "fullname", n_for_each = NULL,
|
||||
This function filters a data set to include only the top \emph{n} microorganisms based on a specified property, such as taxonomic family or genus. For example, it can filter a data set to the top 3 species, or to any species in the top 5 genera, or to the top 3 species in each of the top 5 genera.
|
||||
}
|
||||
\details{
|
||||
This function is useful for preprocessing data before creating \link[=antibiograms]{antibiograms} or other analyses that require focused subsets of microbial data. For example, it can filter a data set to only include isolates from the top 10 species.
|
||||
This function is useful for preprocessing data before creating \link[=antibiogram]{antibiograms} or other analyses that require focused subsets of microbial data. For example, it can filter a data set to only include isolates from the top 10 species.
|
||||
}
|
||||
\examples{
|
||||
# filter to the top 3 species:
|
||||
|
@ -27,21 +27,25 @@
|
||||
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
|
||||
# ==================================================================== #
|
||||
|
||||
# we use {tinytest} instead of {testthat} because it does not rely on recent R versions - we want to test on R >= 3.0.
|
||||
# we use {tinytest} for older R versions to allow unit testing in R >= 3.0.0.
|
||||
|
||||
# Run them in RStudio using:
|
||||
# rstudioapi::jobRunScript("tests/tinytest.R", name = "AMR Unit Tests", workingDir = getwd(), exportEnv = "tinytest_results")
|
||||
# use this to quickly use testtthat for more informative errors:
|
||||
# testthat::test_dir("inst/tests")
|
||||
|
||||
# test only on GitHub Actions and at using RStudio jobs - not on CRAN as tests are lengthy
|
||||
if (tryCatch(isTRUE(AMR:::import_fn("isJob", "rstudioapi")()), error = function(e) FALSE) ||
|
||||
identical(Sys.getenv("R_RUN_TINYTEST"), "true")) {
|
||||
# env var 'R_LIBS_USER' got overwritten during 'R CMD check' in GitHub Actions, so:
|
||||
# test only on GitHub Actions - not on CRAN as tests are lengthy
|
||||
if (identical(Sys.getenv("R_RUN_TINYTEST"), "true")) {
|
||||
# env var 'R_LIBS_USER' gets overwritten during 'R CMD check' in GitHub Actions, so:
|
||||
.libPaths(c(Sys.getenv("R_LIBS_USER_GH_ACTIONS"), .libPaths()))
|
||||
|
||||
if (AMR:::pkg_is_available("tinytest", also_load = TRUE)) {
|
||||
|
||||
# load the package
|
||||
library(AMR)
|
||||
|
||||
# set language
|
||||
set_AMR_locale("English")
|
||||
# set some functions if on old R
|
||||
|
||||
# set some functions for older R versions
|
||||
if (getRversion() < "3.2.0") {
|
||||
anyNA <- AMR:::anyNA
|
||||
dir.exists <- AMR:::dir.exists
|
||||
@ -65,15 +69,14 @@ if (tryCatch(isTRUE(AMR:::import_fn("isJob", "rstudioapi")()), error = function(
|
||||
deparse1 <- AMR:::deparse1
|
||||
}
|
||||
|
||||
# start the unit tests
|
||||
suppressMessages(
|
||||
out <- test_package("AMR",
|
||||
testdir = ifelse(dir.exists("inst/tinytest"),
|
||||
"inst/tinytest",
|
||||
"tinytest"
|
||||
),
|
||||
verbose = FALSE,
|
||||
color = FALSE
|
||||
testdir = ifelse(dir.exists("inst/tests"),
|
||||
"inst/tests",
|
||||
"tests"
|
||||
),
|
||||
verbose = FALSE,
|
||||
color = FALSE
|
||||
)
|
||||
)
|
||||
cat("\n\nSUMMARY:\n")
|
||||
|
Loading…
Reference in New Issue
Block a user