1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-09 19:01:51 +02:00

(v1.4.0.9043) documentation update

This commit is contained in:
2020-12-22 00:51:17 +01:00
parent ee70883246
commit 128ebcfd62
107 changed files with 518 additions and 475 deletions

View File

@ -24,7 +24,7 @@ ab_from_text(
\item{thorough_search}{logical to indicate whether the input must be extensively searched for misspelling and other faulty input values. Setting this to \code{TRUE} will take considerably more time than when using \code{FALSE}. At default, it will turn \code{TRUE} when all input elements contain a maximum of three words.}
\item{...}{parameters passed on to \code{\link[=as.ab]{as.ab()}}}
\item{...}{arguments passed on to \code{\link[=as.ab]{as.ab()}}}
}
\value{
A \link{list}, or a \link{character} if \code{collapse} is not \code{NULL}
@ -34,7 +34,7 @@ Use this function on e.g. clinical texts from health care records. It returns a
}
\details{
This function is also internally used by \code{\link[=as.ab]{as.ab()}}, although it then only searches for the first drug name and will throw a note if more drug names could have been returned.
\subsection{Parameter \code{type}}{
\subsection{Argument \code{type}}{
At default, the function will search for antimicrobial drug names. All text elements will be searched for official names, ATC codes and brand names. As it uses \code{\link[=as.ab]{as.ab()}} internally, it will correct for misspelling.
@ -43,12 +43,12 @@ With \code{type = "dose"} (or similar, like "dosing", "doses"), all text element
With \code{type = "administration"} (or abbreviations, like "admin", "adm"), all text elements will be searched for a form of drug administration. It supports the following forms (including common abbreviations): buccal, implant, inhalation, instillation, intravenous, nasal, oral, parenteral, rectal, sublingual, transdermal and vaginal. Abbreviations for oral (such as 'po', 'per os') will become "oral", all values for intravenous (such as 'iv', 'intraven') will become "iv". It supports multiple values in one clinical text, see \emph{Examples}.
}
\subsection{Parameter \code{collapse}}{
\subsection{Argument \code{collapse}}{
Without using \code{collapse}, this function will return a \link{list}. This can be convenient to use e.g. inside a \code{mutate()}):\cr
\code{df \%>\% mutate(abx = ab_from_text(clinical_text))}
The returned AB codes can be transformed to official names, groups, etc. with all \code{\link[=ab_property]{ab_*}} functions such as \code{\link[=ab_name]{ab_name()}} and \code{\link[=ab_group]{ab_group()}}, or by using the \code{translate_ab} parameter.
The returned AB codes can be transformed to official names, groups, etc. with all \code{\link[=ab_property]{ab_*}} functions such as \code{\link[=ab_name]{ab_name()}} and \code{\link[=ab_group]{ab_group()}}, or by using the \code{translate_ab} argument.
With using \code{collapse}, this function will return a \link{character}:\cr
\code{df \%>\% mutate(abx = ab_from_text(clinical_text, collapse = "|"))}

View File

@ -50,7 +50,7 @@ ab_property(x, property = "name", language = get_locale(), ...)
\item{tolower}{logical to indicate whether the first character of every output should be transformed to a lower case character. This will lead to e.g. "polymyxin B" and not "polymyxin b".}
\item{...}{other parameters passed on to \code{\link[=as.ab]{as.ab()}}}
\item{...}{other arguments passed on to \code{\link[=as.ab]{as.ab()}}}
\item{administration}{way of administration, either \code{"oral"} or \code{"iv"}}
@ -81,7 +81,7 @@ The function \code{\link[=ab_url]{ab_url()}} will return the direct URL to the o
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Source}{

View File

@ -15,7 +15,7 @@ age(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...)
\item{na.rm}{a logical to indicate whether missing values should be removed}
\item{...}{parameters passed on to \code{\link[=as.POSIXlt]{as.POSIXlt()}}, such as \code{origin}}
\item{...}{arguments passed on to \code{\link[=as.POSIXlt]{as.POSIXlt()}}, such as \code{origin}}
}
\value{
An \link{integer} (no decimals) if \code{exact = FALSE}, a \link{double} (with decimals) otherwise
@ -31,7 +31,7 @@ Ages below 0 will be returned as \code{NA} with a warning. Ages above 120 will o
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -17,10 +17,10 @@ age_groups(x, split_at = c(12, 25, 55, 75), na.rm = FALSE)
Ordered \link{factor}
}
\description{
Split ages into age groups defined by the \code{split} parameter. This allows for easier demographic (antimicrobial resistance) analysis.
Split ages into age groups defined by the \code{split} argument. This allows for easier demographic (antimicrobial resistance) analysis.
}
\details{
To split ages, the input for the \code{split_at} parameter can be:
To split ages, the input for the \code{split_at} argument can be:
\itemize{
\item A numeric vector. A value of e.g. \code{c(10, 20)} will split \code{x} on 0-9, 10-19 and 20+. A value of only \code{50} will split \code{x} on 0-49 and 50+.
The default is to split on young children (0-11), youth (12-24), young adults (25-54), middle-aged adults (55-74) and elderly (75+).
@ -38,7 +38,7 @@ The default is to split on young children (0-11), youth (12-24), young adults (2
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -54,7 +54,7 @@ European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: \url{htt
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{WHOCC}{

View File

@ -29,7 +29,7 @@ Interpret disk values as RSI values with \code{\link[=as.rsi]{as.rsi()}}. It sup
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -29,7 +29,7 @@ To interpret MIC values as RSI values, use \code{\link[=as.rsi]{as.rsi()}} on MI
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -47,7 +47,7 @@ This excludes \emph{Enterococci} at default (who are in group D), use \code{Lanc
\item{language}{language to translate text like "no growth", which defaults to the system language (see \code{\link[=get_locale]{get_locale()}})}
\item{...}{other parameters passed on to functions}
\item{...}{other arguments passed on to functions}
}
\value{
A \link{character} \link{vector} with additional class \code{\link{mo}}
@ -136,7 +136,7 @@ The intelligent rules consider the prevalence of microorganisms in humans groupe
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Matching score for microorganisms}{

View File

@ -53,7 +53,7 @@ is.rsi.eligible(x, threshold = 0.05)
\arguments{
\item{x}{vector of values (for class \code{\link{mic}}: an MIC value in mg/L, for class \code{\link{disk}}: a disk diffusion radius in millimetres)}
\item{...}{for using on a \link{data.frame}: names of columns to apply \code{\link[=as.rsi]{as.rsi()}} on (supports tidy selection like \code{AMX:VAN}). Otherwise: parameters passed on to methods.}
\item{...}{for using on a \link{data.frame}: names of columns to apply \code{\link[=as.rsi]{as.rsi()}} on (supports tidy selection like \code{AMX:VAN}). Otherwise: arguments passed on to methods.}
\item{threshold}{maximum fraction of invalid antimicrobial interpretations of \code{x}, please see \emph{Examples}}
@ -69,7 +69,7 @@ is.rsi.eligible(x, threshold = 0.05)
\item{add_intrinsic_resistance}{\emph{(only useful when using a EUCAST guideline)} a logical to indicate whether intrinsic antibiotic resistance must also be considered for applicable bug-drug combinations, meaning that e.g. ampicillin will always return "R" in \emph{Klebsiella} species. Determination is based on the \link{intrinsic_resistant} data set, that itself is based on \href{https://www.eucast.org/expert_rules_and_intrinsic_resistance/}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.2} from 2020.}
\item{reference_data}{a \link{data.frame} to be used for interpretation, which defaults to the \link{rsi_translation} data set. Changing this parameter allows for using own interpretation guidelines. This parameter must contain a data set that is equal in structure to the \link{rsi_translation} data set (same column names and column types). Please note that the \code{guideline} parameter will be ignored when \code{reference_data} is manually set.}
\item{reference_data}{a \link{data.frame} to be used for interpretation, which defaults to the \link{rsi_translation} data set. Changing this argument allows for using own interpretation guidelines. This argument must contain a data set that is equal in structure to the \link{rsi_translation} data set (same column names and column types). Please note that the \code{guideline} argument will be ignored when \code{reference_data} is manually set.}
\item{col_mo}{column name of the IDs of the microorganisms (see \code{\link[=as.mo]{as.mo()}}), defaults to the first column of class \code{\link{mo}}. Values will be coerced using \code{\link[=as.mo]{as.mo()}}.}
}
@ -85,14 +85,14 @@ Interpret minimum inhibitory concentration (MIC) values and disk diffusion diame
The \code{\link[=as.rsi]{as.rsi()}} function works in four ways:
\enumerate{
\item For \strong{cleaning raw / untransformed data}. The data will be cleaned to only contain values S, I and R and will try its best to determine this with some intelligence. For example, mixed values with R/SI interpretations and MIC values such as \code{"<0.25; S"} will be coerced to \code{"S"}. Combined interpretations for multiple test methods (as seen in laboratory records) such as \code{"S; S"} will be coerced to \code{"S"}, but a value like \code{"S; I"} will return \code{NA} with a warning that the input is unclear.
\item For \strong{interpreting minimum inhibitory concentration (MIC) values} according to EUCAST or CLSI. You must clean your MIC values first using \code{\link[=as.mic]{as.mic()}}, that also gives your columns the new data class \code{\link{mic}}. Also, be sure to have a column with microorganism names or codes. It will be found automatically, but can be set manually using the \code{mo} parameter.
\item For \strong{interpreting minimum inhibitory concentration (MIC) values} according to EUCAST or CLSI. You must clean your MIC values first using \code{\link[=as.mic]{as.mic()}}, that also gives your columns the new data class \code{\link{mic}}. Also, be sure to have a column with microorganism names or codes. It will be found automatically, but can be set manually using the \code{mo} argument.
\itemize{
\item Using \code{dplyr}, R/SI interpretation can be done very easily with either:\preformatted{your_data \%>\% mutate_if(is.mic, as.rsi) # until dplyr 1.0.0
your_data \%>\% mutate(across(where(is.mic), as.rsi)) # since dplyr 1.0.0
}
\item Operators like "<=" will be stripped before interpretation. When using \code{conserve_capped_values = TRUE}, an MIC value of e.g. ">2" will always return "R", even if the breakpoint according to the chosen guideline is ">=4". This is to prevent that capped values from raw laboratory data would not be treated conservatively. The default behaviour (\code{conserve_capped_values = FALSE}) considers ">2" to be lower than ">=4" and might in this case return "S" or "I".
}
\item For \strong{interpreting disk diffusion diameters} according to EUCAST or CLSI. You must clean your disk zones first using \code{\link[=as.disk]{as.disk()}}, that also gives your columns the new data class \code{\link{disk}}. Also, be sure to have a column with microorganism names or codes. It will be found automatically, but can be set manually using the \code{mo} parameter.
\item For \strong{interpreting disk diffusion diameters} according to EUCAST or CLSI. You must clean your disk zones first using \code{\link[=as.disk]{as.disk()}}, that also gives your columns the new data class \code{\link{disk}}. Also, be sure to have a column with microorganism names or codes. It will be found automatically, but can be set manually using the \code{mo} argument.
\itemize{
\item Using \code{dplyr}, R/SI interpretation can be done very easily with either:\preformatted{your_data \%>\% mutate_if(is.disk, as.rsi) # until dplyr 1.0.0
your_data \%>\% mutate(across(where(is.disk), as.rsi)) # since dplyr 1.0.0
@ -104,9 +104,9 @@ your_data \%>\% mutate(across(where(is.disk), as.rsi)) # since dplyr 1.0.0
\subsection{Supported guidelines}{
For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} parameter are: "CLSI 2010", "CLSI 2011", "CLSI 2012", "CLSI 2013", "CLSI 2014", "CLSI 2015", "CLSI 2016", "CLSI 2017", "CLSI 2018", "CLSI 2019", "EUCAST 2011", "EUCAST 2012", "EUCAST 2013", "EUCAST 2014", "EUCAST 2015", "EUCAST 2016", "EUCAST 2017", "EUCAST 2018", "EUCAST 2019", "EUCAST 2020".
For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the \code{guideline} argument are: "CLSI 2010", "CLSI 2011", "CLSI 2012", "CLSI 2013", "CLSI 2014", "CLSI 2015", "CLSI 2016", "CLSI 2017", "CLSI 2018", "CLSI 2019", "EUCAST 2011", "EUCAST 2012", "EUCAST 2013", "EUCAST 2014", "EUCAST 2015", "EUCAST 2016", "EUCAST 2017", "EUCAST 2018", "EUCAST 2019", "EUCAST 2020".
Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline. You can set your own data set using the \code{reference_data} parameter. The \code{guideline} parameter will then be ignored.
Simply using \code{"CLSI"} or \code{"EUCAST"} as input will automatically select the latest version of that guideline. You can set your own data set using the \code{reference_data} argument. The \code{guideline} argument will then be ignored.
}
\subsection{After interpretation}{
@ -121,7 +121,7 @@ The repository of this package \href{https://github.com/msberends/AMR/blob/maste
\subsection{Other}{
The function \code{\link[=is.rsi.eligible]{is.rsi.eligible()}} returns \code{TRUE} when a columns contains at most 5\% invalid antimicrobial interpretations (not S and/or I and/or R), and \code{FALSE} otherwise. The threshold of 5\% can be set with the \code{threshold} parameter.
The function \code{\link[=is.rsi.eligible]{is.rsi.eligible()}} returns \code{TRUE} when a columns contains at most 5\% invalid antimicrobial interpretations (not S and/or I and/or R), and \code{FALSE} otherwise. The threshold of 5\% can be set with the \code{threshold} argument.
}
}
\section{Interpretation of R and S/I}{
@ -144,7 +144,7 @@ This AMR package honours this new insight. Use \code{\link[=susceptibility]{susc
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Reference data publicly available}{
@ -173,7 +173,8 @@ df <- data.frame(microorganism = "Escherichia coli",
CIP = as.mic(0.256),
GEN = as.disk(18),
TOB = as.disk(16),
NIT = as.mic(32))
NIT = as.mic(32),
ERY = "R")
as.rsi(df)
# for single values

View File

@ -32,13 +32,13 @@ atc_online_ddd(atc_code, ...)
\item{url_vet}{url of website of the WHOCC for veterinary medicine. The sign \verb{\%s} can be used as a placeholder for ATC_vet codes (that all start with "Q").}
\item{...}{parameters to pass on to \code{atc_property}}
\item{...}{arguments to pass on to \code{atc_property}}
}
\description{
Gets data from the WHO to determine properties of an ATC (e.g. an antibiotic), such as the name, defined daily dose (DDD) or standard unit.
}
\details{
Options for parameter \code{administration}:
Options for argument \code{administration}:
\itemize{
\item \code{"Implant"} = Implant
\item \code{"Inhal"} = Inhalation
@ -71,7 +71,7 @@ Abbreviations of return values when using \code{property = "U"} (unit):
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -25,7 +25,7 @@ The function returns a \link{data.frame} with columns \code{"resistant"} and \co
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -39,7 +39,7 @@ bug_drug_combinations(x, col_mo = NULL, FUN = mo_shortname, ...)
\item{minimum}{the minimum allowed number of available (tested) isolates. Any isolate count lower than \code{minimum} will return \code{NA} with a warning. The default number of \code{30} isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see Source.}
\item{combine_SI}{a logical to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant). This used to be the parameter \code{combine_IR}, but this now follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. Default is \code{TRUE}.}
\item{combine_SI}{a logical to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant). This used to be the argument \code{combine_IR}, but this now follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. Default is \code{TRUE}.}
\item{combine_IR}{logical to indicate whether values R and I should be summed}
@ -68,7 +68,7 @@ The function \code{\link[=format]{format()}} calculates the resistance per bug-d
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -51,9 +51,9 @@ count_df(
\item{language}{language of the returned text, defaults to system language (see \code{\link[=get_locale]{get_locale()}}) and can also be set with \code{getOption("AMR_locale")}. Use \code{language = NULL} or \code{language = ""} to prevent translation.}
\item{combine_SI}{a logical to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant). This used to be the parameter \code{combine_IR}, but this now follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. Default is \code{TRUE}.}
\item{combine_SI}{a logical to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant). This used to be the argument \code{combine_IR}, but this now follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. Default is \code{TRUE}.}
\item{combine_IR}{a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is outdated, see parameter \code{combine_SI}.}
\item{combine_IR}{a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is outdated, see argument \code{combine_SI}.}
}
\value{
An \link{integer}
@ -77,7 +77,7 @@ The function \code{\link[=count_df]{count_df()}} takes any variable from \code{d
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Interpretation of R and S/I}{

View File

@ -66,7 +66,7 @@ Before further processing, two non-EUCAST rules about drug combinations can be a
Important examples include amoxicillin and amoxicillin/clavulanic acid, and trimethoprim and trimethoprim/sulfamethoxazole. Needless to say, for these rules to work, both drugs must be available in the data set.
Since these rules are not officially approved by EUCAST, they are not applied at default. To use these rules, include \code{"other"} to the \code{rules} parameter, or use \code{eucast_rules(..., rules = "all")}.
Since these rules are not officially approved by EUCAST, they are not applied at default. To use these rules, include \code{"other"} to the \code{rules} argument, or use \code{eucast_rules(..., rules = "all")}.
}
}
\section{Antibiotics}{
@ -83,7 +83,7 @@ Amikacin (\code{AMK}, \href{https://www.whocc.no/atc_ddd_index/?code=J01GB06&sho
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Reference data publicly available}{

View File

@ -67,7 +67,7 @@ All columns of \code{x} will be searched for known antibiotic names, abbreviatio
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\examples{

View File

@ -70,9 +70,9 @@ filter_first_weighted_isolate(
\item{testcodes_exclude}{character vector with test codes that should be excluded (case-insensitive)}
\item{icu_exclude}{logical whether ICU isolates should be excluded (rows with value \code{TRUE} in column \code{col_icu})}
\item{icu_exclude}{logical whether ICU isolates should be excluded (rows with value \code{TRUE} in the column set with \code{col_icu})}
\item{specimen_group}{value in column \code{col_specimen} to filter on}
\item{specimen_group}{value in the column set with \code{col_specimen} to filter on}
\item{type}{type to determine weighed isolates; can be \code{"keyantibiotics"} or \code{"points"}, see Details}
@ -84,7 +84,7 @@ filter_first_weighted_isolate(
\item{include_unknown}{logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code \code{"UNKNOWN"}, which defaults to \code{FALSE}. For WHONET users, this means that all records with organism code \code{"con"} (\emph{contamination}) will be excluded at default. Isolates with a microbial ID of \code{NA} will always be excluded as first isolate.}
\item{...}{parameters passed on to \code{\link[=first_isolate]{first_isolate()}} when using \code{\link[=filter_first_isolate]{filter_first_isolate()}}, or parameters passed on to \code{\link[=key_antibiotics]{key_antibiotics()}} when using \code{\link[=filter_first_weighted_isolate]{filter_first_weighted_isolate()}}}
\item{...}{arguments passed on to \code{\link[=first_isolate]{first_isolate()}} when using \code{\link[=filter_first_isolate]{filter_first_isolate()}}, or arguments passed on to \code{\link[=key_antibiotics]{key_antibiotics()}} when using \code{\link[=filter_first_weighted_isolate]{filter_first_weighted_isolate()}}}
}
\value{
A \code{\link{logical}} vector
@ -93,7 +93,7 @@ A \code{\link{logical}} vector
Determine first (weighted) isolates of all microorganisms of every patient per episode and (if needed) per specimen type. To determine patient episodes not necessarily based on microorganisms, use \code{\link[=is_new_episode]{is_new_episode()}} that also supports grouping with the \code{dplyr} package.
}
\details{
These functions are context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} parameter can be omitted, please see \emph{Examples}.
These functions are context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} argument can be omitted, please see \emph{Examples}.
The \code{\link[=first_isolate]{first_isolate()}} function is a wrapper around the \code{\link[=is_new_episode]{is_new_episode()}} function, but more efficient for data sets containing microorganism codes or names.
@ -125,10 +125,10 @@ The function \code{\link[=filter_first_weighted_isolate]{filter_first_weighted_i
There are two ways to determine whether isolates can be included as first \emph{weighted} isolates which will give generally the same results:
\enumerate{
\item Using \code{type = "keyantibiotics"} and parameter \code{ignore_I}
\item Using \code{type = "keyantibiotics"} and argument \code{ignore_I}
Any difference from S to R (or vice versa) will (re)select an isolate as a first weighted isolate. With \code{ignore_I = FALSE}, also differences from I to S|R (or vice versa) will lead to this. This is a reliable method and 30-35 times faster than method 2. Read more about this in the \code{\link[=key_antibiotics]{key_antibiotics()}} function.
\item Using \code{type = "points"} and parameter \code{points_threshold}
\item Using \code{type = "points"} and argument \code{points_threshold}
A difference from I to S|R (or vice versa) means 0.5 points, a difference from S to R (or vice versa) means 1 point. When the sum of points exceeds \code{points_threshold}, which default to \code{2}, an isolate will be (re)selected as a first weighted isolate.
}
@ -139,7 +139,7 @@ A difference from I to S|R (or vice versa) means 0.5 points, a difference from S
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -10,7 +10,7 @@ As per their GPL-2 licence that demands documentation of code changes, the chang
\enumerate{
\item Rewritten code to remove the dependency on packages \code{plyr}, \code{scales} and \code{grid}
\item Parametrised more options, like arrow and ellipse settings
\item Hardened all input possibilities by defining the exact type of user input for every parameter
\item Hardened all input possibilities by defining the exact type of user input for every argument
\item Added total amount of explained variance as a caption in the plot
\item Cleaned all syntax based on the \code{lintr} package, fixed grammatical errors and added integrity checks
\item Updated documentation
@ -100,7 +100,7 @@ ggplot_pca(
\item{base_textsize}{the text size for all plot elements except the labels and arrows}
\item{...}{Parameters passed on to functions}
\item{...}{Arguments passed on to functions}
}
\description{
Produces a \code{ggplot2} variant of a so-called \href{https://en.wikipedia.org/wiki/Biplot}{biplot} for PCA (principal component analysis), but is more flexible and more appealing than the base \R \code{\link[=biplot]{biplot()}} function.

View File

@ -89,9 +89,9 @@ labels_rsi_count(
\item{translate_ab}{a column name of the \link{antibiotics} data set to translate the antibiotic abbreviations to, using \code{\link[=ab_property]{ab_property()}}}
\item{combine_SI}{a logical to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant). This used to be the parameter \code{combine_IR}, but this now follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. Default is \code{TRUE}.}
\item{combine_SI}{a logical to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant). This used to be the argument \code{combine_IR}, but this now follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. Default is \code{TRUE}.}
\item{combine_IR}{a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is outdated, see parameter \code{combine_SI}.}
\item{combine_IR}{a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is outdated, see argument \code{combine_SI}.}
\item{minimum}{the minimum allowed number of available (tested) isolates. Any isolate count lower than \code{minimum} will return \code{NA} with a warning. The default number of \code{30} isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see Source.}
@ -117,13 +117,13 @@ labels_rsi_count(
\item{y.title}{text to show as y axis description}
\item{...}{other parameters passed on to \code{\link[=geom_rsi]{geom_rsi()}}}
\item{...}{other arguments passed on to \code{\link[=geom_rsi]{geom_rsi()}}}
}
\description{
Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on \link[ggplot2:ggplot]{ggplot2} functions.
}
\details{
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} parameter. See \code{\link[=count_df]{count_df()}}.
At default, the names of antibiotics will be shown on the plots using \code{\link[=ab_name]{ab_name()}}. This can be set with the \code{translate_ab} argument. See \code{\link[=count_df]{count_df()}}.
\subsection{The functions}{
\code{\link[=geom_rsi]{geom_rsi()}} will take any variable from the data that has an \code{\link{rsi}} class (created with \code{\link[=as.rsi]{as.rsi()}}) using \code{\link[=rsi_df]{rsi_df()}} and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
@ -178,7 +178,7 @@ if (require("ggplot2") & require("dplyr")) {
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(datalabels = FALSE)
# add other ggplot2 parameters as you like:
# add other ggplot2 arguments as you like:
example_isolates \%>\%
select(AMX, NIT, FOS, TMP, CIP) \%>\%
ggplot_rsi(width = 0.5,

View File

@ -27,7 +27,7 @@ You can look for an antibiotic (trade) name or abbreviation and it will search \
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -17,7 +17,7 @@ is_new_episode(x, episode_days = 365, ...)
a \link{logical} vector
}
\description{
This function determines which items in a vector can be considered (the start of) a new episode, based on the parameter \code{episode_days}. This can be used to determine clinical episodes for any epidemiological analysis.
This function determines which items in a vector can be considered (the start of) a new episode, based on the argument \code{episode_days}. This can be used to determine clinical episodes for any epidemiological analysis.
}
\details{
Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least \code{episode_days} days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least \code{episode_days} days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.
@ -31,7 +31,7 @@ The \code{dplyr} package is not required for this function to work, but this fun
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -45,7 +45,7 @@ If the \code{dplyr} package is installed, their join functions will be used. Oth
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -52,7 +52,7 @@ key_antibiotics_equal(
\item{warnings}{give a warning about missing antibiotic columns (they will be ignored)}
\item{...}{other parameters passed on to functions}
\item{...}{other arguments passed on to functions}
\item{y, z}{character vectors to compare}
@ -68,7 +68,7 @@ key_antibiotics_equal(
These function can be used to determine first isolates (see \code{\link[=first_isolate]{first_isolate()}}). Using key antibiotics to determine first isolates is more reliable than without key antibiotics. These selected isolates can then be called first \emph{weighted} isolates.
}
\details{
The \code{\link[=key_antibiotics]{key_antibiotics()}} function is context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} parameter can be omitted, please see \emph{Examples}.
The \code{\link[=key_antibiotics]{key_antibiotics()}} function is context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} argument can be omitted, please see \emph{Examples}.
The function \code{\link[=key_antibiotics]{key_antibiotics()}} returns a character vector with 12 antibiotic results for every isolate. These isolates can then be compared using \code{\link[=key_antibiotics_equal]{key_antibiotics_equal()}}, to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (\code{"."}) by \code{\link[=key_antibiotics]{key_antibiotics()}} and ignored by \code{\link[=key_antibiotics_equal]{key_antibiotics_equal()}}.
@ -113,17 +113,17 @@ The function \code{\link[=key_antibiotics_equal]{key_antibiotics_equal()}} check
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Key antibiotics}{
There are two ways to determine whether isolates can be included as first \emph{weighted} isolates which will give generally the same results:
\enumerate{
\item Using \code{type = "keyantibiotics"} and parameter \code{ignore_I}
\item Using \code{type = "keyantibiotics"} and argument \code{ignore_I}
Any difference from S to R (or vice versa) will (re)select an isolate as a first weighted isolate. With \code{ignore_I = FALSE}, also differences from I to S|R (or vice versa) will lead to this. This is a reliable method and 30-35 times faster than method 2. Read more about this in the \code{\link[=key_antibiotics]{key_antibiotics()}} function.
\item Using \code{type = "points"} and parameter \code{points_threshold}
\item Using \code{type = "points"} and argument \code{points_threshold}
A difference from I to S|R (or vice versa) means 0.5 points, a difference from S to R (or vice versa) means 1 point. When the sum of points exceeds \code{points_threshold}, which default to \code{2}, an isolate will be (re)selected as a first weighted isolate.
}

View File

@ -30,7 +30,7 @@ Kurtosis is a measure of the "tailedness" of the probability distribution of a r
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -26,7 +26,7 @@ The \link[=lifecycle]{lifecycle} of this function is \strong{maturing}. The unly
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Retired lifecycle}{

View File

@ -44,7 +44,7 @@ Using RStudio? The text \verb{\%like\%} can also be directly inserted in your co
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -72,7 +72,7 @@ Ordered \link{factor} with levels \code{Negative} < \verb{Positive, unconfirmed}
Determine which isolates are multidrug-resistant organisms (MDRO) according to international and national guidelines.
}
\details{
These functions are context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} parameter can be omitted, please see \emph{Examples}.
These functions are context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} argument can be omitted, please see \emph{Examples}.
For the \code{pct_required_classes} argument, values above 1 will be divided by 100. This is to support both fractions (\code{0.75} or \code{3/4}) and percentages (\code{75}).
@ -107,7 +107,7 @@ Please suggest your own (country-specific) guidelines by letting us know: \url{h
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Antibiotics}{

View File

@ -40,7 +40,7 @@ All matches are sorted descending on their matching score and for all user input
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\examples{

View File

@ -89,7 +89,7 @@ mo_property(x, property = "fullname", language = get_locale(), ...)
\item{language}{language of the returned text, defaults to system language (see \code{\link[=get_locale]{get_locale()}}) and can be overwritten by setting the option \code{AMR_locale}, e.g. \code{options(AMR_locale = "de")}, see \link{translate}. Also used to translate text like "no growth". Use \code{language = NULL} or \code{language = ""} to prevent translation.}
\item{...}{other parameters passed on to \code{\link[=as.mo]{as.mo()}}, such as 'allow_uncertain' and 'ignore_pattern'}
\item{...}{other arguments passed on to \code{\link[=as.mo]{as.mo()}}, such as 'allow_uncertain' and 'ignore_pattern'}
\item{ab}{any (vector of) text that can be coerced to a valid antibiotic code with \code{\link[=as.ab]{as.ab()}}}
@ -123,7 +123,7 @@ Since the top-level of the taxonomy is sometimes referred to as 'kingdom' and so
The Gram stain - \code{\link[=mo_gramstain]{mo_gramstain()}} - will be determined based on the taxonomic kingdom and phylum. According to Cavalier-Smith (2002, \href{https://pubmed.ncbi.nlm.nih.gov/11837318}{PMID 11837318}), who defined subkingdoms Negibacteria and Posibacteria, only these phyla are Posibacteria: Actinobacteria, Chloroflexi, Firmicutes and Tenericutes. These bacteria are considered Gram-positive - all other bacteria are considered Gram-negative. Species outside the kingdom of Bacteria will return a value \code{NA}. Functions \code{\link[=mo_is_gram_negative]{mo_is_gram_negative()}} and \code{\link[=mo_is_gram_positive]{mo_is_gram_positive()}} always return \code{TRUE} or \code{FALSE} (except when the input is \code{NA} or the MO code is \code{UNKNOWN}), thus always return \code{FALSE} for species outside the taxonomic kingdom of Bacteria.
Intrinsic resistance - \code{\link[=mo_is_intrinsic_resistant]{mo_is_intrinsic_resistant()}} - will be determined based on the \link{intrinsic_resistant} data set, which is based on \href{https://www.eucast.org/expert_rules_and_intrinsic_resistance/}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.2} from 2020. The \code{\link[=mo_is_intrinsic_resistant]{mo_is_intrinsic_resistant()}} can be vectorised over parameters \code{x} (input for microorganisms) and over \code{ab} (input for antibiotics).
Intrinsic resistance - \code{\link[=mo_is_intrinsic_resistant]{mo_is_intrinsic_resistant()}} - will be determined based on the \link{intrinsic_resistant} data set, which is based on \href{https://www.eucast.org/expert_rules_and_intrinsic_resistance/}{'EUCAST Expert Rules' and 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.2} from 2020. The \code{\link[=mo_is_intrinsic_resistant]{mo_is_intrinsic_resistant()}} can be vectorised over arguments \code{x} (input for microorganisms) and over \code{ab} (input for antibiotics).
All output will be \link{translate}d where possible.
@ -134,7 +134,7 @@ The function \code{\link[=mo_url]{mo_url()}} will return the direct URL to the o
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Matching score for microorganisms}{

View File

@ -26,7 +26,7 @@ This is \strong{the fastest way} to have your organisation (or analysis) specifi
\details{
The reference file can be a text file separated with commas (CSV) or tabs or pipes, an Excel file (either 'xls' or 'xlsx' format) or an \R object file (extension '.rds'). To use an Excel file, you will need to have the \code{readxl} package installed.
\code{\link[=set_mo_source]{set_mo_source()}} will check the file for validity: it must be a \link{data.frame}, must have a column named \code{"mo"} which contains values from \code{\link[=microorganisms]{microorganisms$mo}} and must have a reference column with your own defined values. If all tests pass, \code{\link[=set_mo_source]{set_mo_source()}} will read the file into \R and will ask to export it to \code{"~/mo_source.rds"}. The CRAN policy disallows packages to write to the file system, although '\emph{exceptions may be allowed in interactive sessions if the package obtains confirmation from the user}'. For this reason, this function only works in interactive sessions so that the user can \strong{specifically confirm and allow} that this file will be created. The destination of this file can be set with the \code{destination} parameter and defaults to the user's home directory. It can also be set as an \R option, using \code{options(AMR_mo_source = "my/location/file.rds")}.
\code{\link[=set_mo_source]{set_mo_source()}} will check the file for validity: it must be a \link{data.frame}, must have a column named \code{"mo"} which contains values from \code{\link[=microorganisms]{microorganisms$mo}} and must have a reference column with your own defined values. If all tests pass, \code{\link[=set_mo_source]{set_mo_source()}} will read the file into \R and will ask to export it to \code{"~/mo_source.rds"}. The CRAN policy disallows packages to write to the file system, although '\emph{exceptions may be allowed in interactive sessions if the package obtains confirmation from the user}'. For this reason, this function only works in interactive sessions so that the user can \strong{specifically confirm and allow} that this file will be created. The destination of this file can be set with the \code{destination} argument and defaults to the user's home directory. It can also be set as an \R option, using \code{options(AMR_mo_source = "my/location/file.rds")}.
The created compressed data file \code{"mo_source.rds"} will be used at default for MO determination (function \code{\link[=as.mo]{as.mo()}} and consequently all \verb{mo_*} functions like \code{\link[=mo_genus]{mo_genus()}} and \code{\link[=mo_gramstain]{mo_gramstain()}}). The location and timestamp of the original file will be saved as an attribute to the compressed data file.
@ -100,7 +100,7 @@ If the original Excel file is moved or deleted, the mo_source file will be remov
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -72,7 +72,7 @@
\item{axes}{logical. If \code{TRUE}, a vertical (or horizontal, if
\code{horiz} is true) axis is drawn.}
\item{...}{Parameters passed on to functions}
\item{...}{Arguments passed on to functions}
\item{height}{either a vector or matrix of values describing the
bars which make up the plot. If \code{height} is a vector, the
@ -103,7 +103,7 @@ Functions to print classes of the \code{AMR} package.
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -66,9 +66,9 @@ rsi_df(
\item{language}{language of the returned text, defaults to system language (see \code{\link[=get_locale]{get_locale()}}) and can also be set with \code{getOption("AMR_locale")}. Use \code{language = NULL} or \code{language = ""} to prevent translation.}
\item{combine_SI}{a logical to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant). This used to be the parameter \code{combine_IR}, but this now follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. Default is \code{TRUE}.}
\item{combine_SI}{a logical to indicate whether all values of S and I must be merged into one, so the output only consists of S+I vs. R (susceptible vs. resistant). This used to be the argument \code{combine_IR}, but this now follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section 'Interpretation of S, I and R' below. Default is \code{TRUE}.}
\item{combine_IR}{a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is outdated, see parameter \code{combine_SI}.}
\item{combine_IR}{a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is outdated, see argument \code{combine_SI}.}
}
\value{
A \link{double} or, when \code{as_percent = TRUE}, a \link{character}.
@ -83,7 +83,7 @@ The function \code{\link[=resistance]{resistance()}} is equal to the function \c
\strong{Remember that you should filter your table to let it contain only first isolates!} This is needed to exclude duplicates and to reduce selection bias. Use \code{\link[=first_isolate]{first_isolate()}} to determine them in your data set.
These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the \code{\link[=count]{count()}} functions to count isolates. The function \code{\link[=susceptibility]{susceptibility()}} is essentially equal to \code{count_susceptible() / count_all()}. \emph{Low counts can influence the outcome - the \code{proportion} functions may camouflage this, since they only return the proportion (albeit being dependent on the \code{minimum} parameter).}
These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility. Use the \code{\link[=count]{count()}} functions to count isolates. The function \code{\link[=susceptibility]{susceptibility()}} is essentially equal to \code{count_susceptible() / count_all()}. \emph{Low counts can influence the outcome - the \code{proportion} functions may camouflage this, since they only return the proportion (albeit being dependent on the \code{minimum} argument).}
The function \code{\link[=proportion_df]{proportion_df()}} takes any variable from \code{data} that has an \code{\link{rsi}} class (created with \code{\link[=as.rsi]{as.rsi()}}) and calculates the proportions R, I and S. It also supports grouped variables. The function \code{\link[=rsi_df]{rsi_df()}} works exactly like \code{\link[=proportion_df]{proportion_df()}}, but adds the number of isolates.
}
@ -123,7 +123,7 @@ Using \code{only_all_tested} has no impact when only using one antibiotic as inp
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Interpretation of R and S/I}{

View File

@ -33,7 +33,7 @@ These functions can be used for generating random MIC values and disk diffusion
\details{
The base R function \code{\link[=sample]{sample()}} is used for generating values.
Generated values are based on the latest EUCAST guideline implemented in the \link{rsi_translation} data set. To create specific generated values per bug or drug, set the \code{mo} and/or \code{ab} parameter.
Generated values are based on the latest EUCAST guideline implemented in the \link{rsi_translation} data set. To create specific generated values per bug or drug, set the \code{mo} and/or \code{ab} argument.
}
\section{Maturing lifecycle}{

View File

@ -69,7 +69,7 @@ ggplot_rsi_predict(
\item{info}{a logical to indicate whether textual analysis should be printed with the name and \code{\link[=summary]{summary()}} of the statistical model.}
\item{...}{parameters passed on to functions}
\item{...}{arguments passed on to functions}
\item{main}{title of the plot}
@ -93,7 +93,7 @@ Furthermore, the model itself is available as an attribute: \code{attributes(x)$
Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns \code{se_min} and \code{se_max}. See \emph{Examples} for a real live example.
}
\details{
Valid options for the statistical model (parameter \code{model}) are:
Valid options for the statistical model (argument \code{model}) are:
\itemize{
\item \code{"binomial"} or \code{"binom"} or \code{"logit"}: a generalised linear regression model with binomial distribution
\item \code{"loglin"} or \code{"poisson"}: a generalised log-linear regression model with poisson distribution

View File

@ -30,7 +30,7 @@ When negative ('left-skewed'): the left tail is longer; the mass of the distribu
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{

View File

@ -32,7 +32,7 @@ So if the R option \code{AMR_locale} is set, the system variables \code{LANGUAGE
\if{html}{\figure{lifecycle_stable.svg}{options: style=margin-bottom:5px} \cr}
The \link[=lifecycle]{lifecycle} of this function is \strong{stable}. In a stable function, major changes are unlikely. This means that the unlying code will generally evolve by adding new arguments; removing arguments or changing the meaning of existing arguments will be avoided.
If the unlying code needs breaking changes, they will occur gradually. For example, a parameter will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
If the unlying code needs breaking changes, they will occur gradually. For example, a argument will be deprecated and first continue to work, but will emit an message informing you of the change. Next, typically after at least one newly released version on CRAN, the message will be transformed to an error.
}
\section{Read more on our website!}{
@ -41,7 +41,7 @@ On our website \url{https://msberends.github.io/AMR/} you can find \href{https:/
}
\examples{
# The 'language' parameter of below functions
# The 'language' argument of below functions
# will be set automatically to your system language
# with get_locale()