1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-17 07:40:19 +01:00

Built site for AMR@3.0.1.9003: ba30b08

This commit is contained in:
github-actions
2025-11-24 10:42:21 +00:00
parent 7d16891987
commit 141fc468f8
161 changed files with 21798 additions and 313 deletions

157
articles/PCA.md Normal file
View File

@@ -0,0 +1,157 @@
# Conduct principal component analysis (PCA) for AMR
**NOTE: This page will be updated soon, as the pca() function is
currently being developed.**
## Introduction
## Transforming
For PCA, we need to transform our AMR data first. This is what the
`example_isolates` data set in this package looks like:
``` r
library(AMR)
library(dplyr)
glimpse(example_isolates)
#> Rows: 2,000
#> Columns: 46
#> $ date <date> 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002-01-13, 2…
#> $ patient <chr> "A77334", "A77334", "067927", "067927", "067927", "067927", "4…
#> $ age <dbl> 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 71, 75, 50…
#> $ gender <chr> "F", "F", "F", "F", "F", "F", "M", "M", "F", "F", "M", "M", "M…
#> $ ward <chr> "Clinical", "Clinical", "ICU", "ICU", "ICU", "ICU", "Clinical"…
#> $ mo <mo> "B_ESCHR_COLI", "B_ESCHR_COLI", "B_STPHY_EPDR", "B_STPHY_EPDR",…
#> $ PEN <sir> R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, S,…
#> $ OXA <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ FLC <sir> NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA, NA, R, R…
#> $ AMX <sir> NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N…
#> $ AMC <sir> I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I, I, NA, N…
#> $ AMP <sir> NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N…
#> $ TZP <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ CZO <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,…
#> $ FEP <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ CXM <sir> I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R, R, S, S…
#> $ FOX <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,…
#> $ CTX <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S…
#> $ CAZ <sir> NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, S, R, R, …
#> $ CRO <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S…
#> $ GEN <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ TOB <sir> NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, NA, NA, NA…
#> $ AMK <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ KAN <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ TMP <sir> R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, R, R, R, …
#> $ SXT <sir> R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S, S, NA, N…
#> $ NIT <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R,…
#> $ FOS <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ LNZ <sir> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N…
#> $ CIP <sir> NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, NA, S, S…
#> $ MFX <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ VAN <sir> R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, S, S, S, …
#> $ TEC <sir> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N…
#> $ TCY <sir> R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, S, I, R, …
#> $ TGC <sir> NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA…
#> $ DOX <sir> NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA…
#> $ ERY <sir> R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,…
#> $ CLI <sir> R, R, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, R, R, R, R, R, NA…
#> $ AZM <sir> R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,…
#> $ IPM <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S…
#> $ MEM <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ MTR <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ CHL <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ COL <sir> NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, R, R, R, …
#> $ MUP <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ RIF <sir> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N…
```
Now to transform this to a data set with only resistance percentages per
taxonomic order and genus:
``` r
resistance_data <- example_isolates %>%
group_by(
order = mo_order(mo), # group on anything, like order
genus = mo_genus(mo)
) %>% # and genus as we do here
summarise_if(is.sir, resistance) %>% # then get resistance of all drugs
select(
order, genus, AMC, CXM, CTX,
CAZ, GEN, TOB, TMP, SXT
) # and select only relevant columns
head(resistance_data)
#> # A tibble: 6 × 10
#> # Groups: order [5]
#> order genus AMC CXM CTX CAZ GEN TOB TMP SXT
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (unknown order) (unknown ge… NA NA NA NA NA NA NA NA
#> 2 Actinomycetales Schaalia NA NA NA NA NA NA NA NA
#> 3 Bacteroidales Bacteroides NA NA NA NA NA NA NA NA
#> 4 Campylobacterales Campylobact… NA NA NA NA NA NA NA NA
#> 5 Caryophanales Gemella NA NA NA NA NA NA NA NA
#> 6 Caryophanales Listeria NA NA NA NA NA NA NA NA
```
## Perform principal component analysis
The new [`pca()`](https://amr-for-r.org/reference/pca.md) function will
automatically filter on rows that contain numeric values in all selected
variables, so we now only need to do:
``` r
pca_result <- pca(resistance_data)
#> Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT",
#> "TMP", and "TOB". Total observations available: 7.
```
The result can be reviewed with the good old
[`summary()`](https://rdrr.io/r/base/summary.html) function:
``` r
summary(pca_result)
#> Groups (n=4, named as 'order'):
#> [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"
#> Importance of components:
#> PC1 PC2 PC3 PC4 PC5 PC6 PC7
#> Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 1.232e-16
#> Proportion of Variance 0.5799 0.3531 0.0471 0.01435 0.00541 0.00012 0.000e+00
#> Cumulative Proportion 0.5799 0.9330 0.9801 0.99446 0.99988 1.00000 1.000e+00
```
#> Groups (n=4, named as 'order'):
#> [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"
Good news. The first two components explain a total of 93.3% of the
variance (see the PC1 and PC2 values of the *Proportion of Variance*. We
can create a so-called biplot with the base R
[`biplot()`](https://rdrr.io/r/stats/biplot.html) function, to see which
antimicrobial resistance per drug explain the difference per
microorganism.
## Plotting the results
``` r
biplot(pca_result)
```
![](PCA_files/figure-html/unnamed-chunk-5-1.png)
But we cant see the explanation of the points. Perhaps this works
better with our new
[`ggplot_pca()`](https://amr-for-r.org/reference/ggplot_pca.md)
function, that automatically adds the right labels and even groups:
``` r
ggplot_pca(pca_result)
```
![](PCA_files/figure-html/unnamed-chunk-6-1.png)
You can also print an ellipse per group, and edit the appearance:
``` r
ggplot_pca(pca_result, ellipse = TRUE) +
ggplot2::labs(title = "An AMR/PCA biplot!")
```
![](PCA_files/figure-html/unnamed-chunk-7-1.png)