mirror of
https://github.com/msberends/AMR.git
synced 2025-12-16 11:30:23 +01:00
Built site for AMR@3.0.1.9003: ba30b08
This commit is contained in:
467
index.md
Normal file
467
index.md
Normal file
@@ -0,0 +1,467 @@
|
||||
# The `AMR` Package for R
|
||||
|
||||
- Provides an **all-in-one solution** for antimicrobial resistance (AMR)
|
||||
data analysis in a One Health approach
|
||||
- Peer-reviewed, used in over 175 countries, available in 28 languages
|
||||
- Generates **antibiograms** - traditional, combined, syndromic, and
|
||||
even WISCA
|
||||
- Provides the **full microbiological taxonomy** of ~79 000 distinct
|
||||
species and extensive info of ~620 antimicrobial drugs
|
||||
- Applies **CLSI 2011-2025** and **EUCAST 2011-2025** clinical and
|
||||
veterinary breakpoints, and ECOFFs, for MIC and disk zone
|
||||
interpretation
|
||||
- Corrects for duplicate isolates, **calculates** and **predicts** AMR
|
||||
per antimicrobial class
|
||||
- Integrates with **WHONET**, ATC, **EARS-Net**, PubChem, **LOINC**,
|
||||
**SNOMED CT**, and **NCBI**
|
||||
- 100% free of costs and dependencies, highly suitable for places with
|
||||
**limited resources**
|
||||
|
||||
> Now available for Python too! [Click
|
||||
> here](https://amr-for-r.org/articles/AMR_for_Python.md) to read more.
|
||||
|
||||
[amr-for-r.org](https://amr-for-r.org/)
|
||||
|
||||
[doi.org/10.18637/jss.v104.i03](https://doi.org/10.18637/jss.v104.i03)
|
||||
|
||||
[](https://amr-for-r.org/reference/clinical_breakpoints.html#response-from-clsi-and-eucast)
|
||||
|
||||
------------------------------------------------------------------------
|
||||
|
||||
## Introduction
|
||||
|
||||
The `AMR` package is a peer-reviewed, [free and open-source](#copyright)
|
||||
R package with [zero
|
||||
dependencies](https://en.wikipedia.org/wiki/Dependency_hell) to simplify
|
||||
the analysis and prediction of Antimicrobial Resistance (AMR) and to
|
||||
work with microbial and antimicrobial data and properties, by using
|
||||
evidence-based methods. **Our aim is to provide a standard** for clean
|
||||
and reproducible AMR data analysis, that can therefore empower
|
||||
epidemiological analyses to continuously enable surveillance and
|
||||
treatment evaluation in any setting. We are a team of [many different
|
||||
researchers](https://amr-for-r.org/authors.md) from around the globe to
|
||||
make this a successful and durable project!
|
||||
|
||||
This work was published in the Journal of Statistical Software (Volume
|
||||
104(3); [DOI
|
||||
10.18637/jss.v104.i03](https://doi.org/10.18637/jss.v104.i03)) and
|
||||
formed the basis of two PhD theses ([DOI
|
||||
10.33612/diss.177417131](https://doi.org/10.33612/diss.177417131) and
|
||||
[DOI 10.33612/diss.192486375](https://doi.org/10.33612/diss.192486375)).
|
||||
|
||||
After installing this package, R knows [**~79 000 distinct microbial
|
||||
species**](https://amr-for-r.org/reference/microorganisms.md) (updated
|
||||
June 2024) and all [**~620 antimicrobial and antiviral
|
||||
drugs**](https://amr-for-r.org/reference/antimicrobials.md) by name and
|
||||
code (including ATC, EARS-Net, ASIARS-Net, PubChem, LOINC and SNOMED
|
||||
CT), and knows all about valid SIR and MIC values. The integral clinical
|
||||
breakpoint guidelines from CLSI 2011-2025 and EUCAST 2011-2025 are
|
||||
included, even with epidemiological cut-off (ECOFF) values. It supports
|
||||
and can read any data format, including WHONET data. This package works
|
||||
on Windows, macOS and Linux with all versions of R since R-3.0 (April
|
||||
2013). **It was designed to work in any setting, including those with
|
||||
very limited resources**. It was created for both routine data analysis
|
||||
and academic research at the Faculty of Medical Sciences of the
|
||||
[University of Groningen](https://www.rug.nl) and the [University
|
||||
Medical Center Groningen](https://www.umcg.nl).
|
||||
|
||||
### Used in over 175 countries, available in 28 languages
|
||||
|
||||
[](https://amr-for-r.org/countries_large.png)
|
||||
|
||||
Since its first public release in early 2018, this R package has been
|
||||
used in almost all countries in the world. Click the map to enlarge and
|
||||
to see the country names.
|
||||
|
||||
With the help of contributors from all corners of the world, the `AMR`
|
||||
package is available in  English, 
|
||||
Arabic,  Bengali,  Chinese,
|
||||
 Czech,  Danish,  Dutch,
|
||||
 Finnish,  French, 
|
||||
German,  Greek,  Hindi, 
|
||||
Indonesian,  Italian,  Japanese,
|
||||
 Korean,  Norwegian, 
|
||||
Polish,  Portuguese,  Romanian,
|
||||
 Russian,  Spanish, 
|
||||
Swahili,  Swedish,  Turkish,
|
||||
 Ukrainian,  Urdu, and 
|
||||
Vietnamese. Antimicrobial drug (group) names and colloquial
|
||||
microorganism names are provided in these languages.
|
||||
|
||||
## Practical examples
|
||||
|
||||
### Filtering and selecting data
|
||||
|
||||
One of the most powerful functions of this package, aside from
|
||||
calculating and plotting AMR, is selecting and filtering based on
|
||||
antimicrobial columns. This can be done using the so-called
|
||||
[antimicrobial
|
||||
selectors](https://amr-for-r.org/reference/antimicrobial_selectors.html),
|
||||
which work in base R, `dplyr` and `data.table`.
|
||||
|
||||
``` r
|
||||
# AMR works great with dplyr, but it's not required or neccesary
|
||||
library(AMR)
|
||||
library(dplyr, warn.conflicts = FALSE)
|
||||
|
||||
example_isolates %>%
|
||||
mutate(bacteria = mo_fullname()) %>%
|
||||
# filtering functions for microorganisms:
|
||||
filter(mo_is_gram_negative(),
|
||||
mo_is_intrinsic_resistant(ab = "cefotax")) %>%
|
||||
# antimicrobial selectors:
|
||||
select(bacteria,
|
||||
aminoglycosides(),
|
||||
carbapenems())
|
||||
#> ℹ Using column 'mo' as input for `mo_fullname()`
|
||||
#> ℹ Using column 'mo' as input for `mo_is_gram_negative()`
|
||||
#> ℹ Using column 'mo' as input for `mo_is_intrinsic_resistant()`
|
||||
#> ℹ Determining intrinsic resistance based on 'EUCAST Expected Resistant
|
||||
#> Phenotypes' v1.2 (2023). This note will be shown once per session.
|
||||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||||
#> # A tibble: 35 × 7
|
||||
#> bacteria GEN TOB AMK KAN IPM MEM
|
||||
#> <chr> <sir> <sir> <sir> <sir> <sir> <sir>
|
||||
#> 1 Pseudomonas aeruginosa I S NA R S NA
|
||||
#> 2 Pseudomonas aeruginosa I S NA R S NA
|
||||
#> 3 Pseudomonas aeruginosa I S NA R S NA
|
||||
#> 4 Pseudomonas aeruginosa S S S R NA S
|
||||
#> 5 Pseudomonas aeruginosa S S S R S S
|
||||
#> 6 Pseudomonas aeruginosa S S S R S S
|
||||
#> 7 Stenotrophomonas maltophilia R R R R R R
|
||||
#> 8 Pseudomonas aeruginosa S S S R NA S
|
||||
#> 9 Pseudomonas aeruginosa S S S R NA S
|
||||
#> 10 Pseudomonas aeruginosa S S S R S S
|
||||
#> # ℹ 25 more rows
|
||||
```
|
||||
|
||||
With only having defined a row filter on Gram-negative bacteria with
|
||||
intrinsic resistance to cefotaxime
|
||||
([`mo_is_gram_negative()`](https://amr-for-r.org/reference/mo_property.md)
|
||||
and
|
||||
[`mo_is_intrinsic_resistant()`](https://amr-for-r.org/reference/mo_property.md))
|
||||
and a column selection on two antibiotic groups
|
||||
([`aminoglycosides()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
|
||||
and
|
||||
[`carbapenems()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)),
|
||||
the reference data about [all
|
||||
microorganisms](https://amr-for-r.org/reference/microorganisms.md) and
|
||||
[all antimicrobials](https://amr-for-r.org/reference/antimicrobials.md)
|
||||
in the `AMR` package make sure you get what you meant.
|
||||
|
||||
### Generating antibiograms
|
||||
|
||||
The `AMR` package supports generating traditional, combined, syndromic,
|
||||
and even weighted-incidence syndromic combination antibiograms (WISCA).
|
||||
|
||||
If used inside [R Markdown](https://rmarkdown.rstudio.com) or
|
||||
[Quarto](https://quarto.org), the table will be printed in the right
|
||||
output format automatically (such as markdown, LaTeX, HTML, etc.).
|
||||
|
||||
``` r
|
||||
antibiogram(example_isolates,
|
||||
antimicrobials = c(aminoglycosides(), carbapenems()))
|
||||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||||
```
|
||||
|
||||
| Pathogen | Amikacin | Gentamicin | Imipenem | Kanamycin | Meropenem | Tobramycin |
|
||||
|:-----------------|:---------------------|:--------------------|:---------------------|:----------------|:---------------------|:--------------------|
|
||||
| CoNS | 0% (0-8%,N=43) | 86% (82-90%,N=309) | 52% (37-67%,N=48) | 0% (0-8%,N=43) | 52% (37-67%,N=48) | 22% (12-35%,N=55) |
|
||||
| *E. coli* | 100% (98-100%,N=171) | 98% (96-99%,N=460) | 100% (99-100%,N=422) | NA | 100% (99-100%,N=418) | 97% (96-99%,N=462) |
|
||||
| *E. faecalis* | 0% (0-9%,N=39) | 0% (0-9%,N=39) | 100% (91-100%,N=38) | 0% (0-9%,N=39) | NA | 0% (0-9%,N=39) |
|
||||
| *K. pneumoniae* | NA | 90% (79-96%,N=58) | 100% (93-100%,N=51) | NA | 100% (93-100%,N=53) | 90% (79-96%,N=58) |
|
||||
| *P. aeruginosa* | NA | 100% (88-100%,N=30) | NA | 0% (0-12%,N=30) | NA | 100% (88-100%,N=30) |
|
||||
| *P. mirabilis* | NA | 94% (80-99%,N=34) | 94% (79-99%,N=32) | NA | NA | 94% (80-99%,N=34) |
|
||||
| *S. aureus* | NA | 99% (97-100%,N=233) | NA | NA | NA | 98% (92-100%,N=86) |
|
||||
| *S. epidermidis* | 0% (0-8%,N=44) | 79% (71-85%,N=163) | NA | 0% (0-8%,N=44) | NA | 51% (40-61%,N=89) |
|
||||
| *S. hominis* | NA | 92% (84-97%,N=80) | NA | NA | NA | 85% (74-93%,N=62) |
|
||||
| *S. pneumoniae* | 0% (0-3%,N=117) | 0% (0-3%,N=117) | NA | 0% (0-3%,N=117) | NA | 0% (0-3%,N=117) |
|
||||
|
||||
In combination antibiograms, it is clear that combined antimicrobials
|
||||
yield higher empiric coverage:
|
||||
|
||||
``` r
|
||||
antibiogram(example_isolates,
|
||||
antimicrobials = c("TZP", "TZP+TOB", "TZP+GEN"),
|
||||
mo_transform = "gramstain")
|
||||
```
|
||||
|
||||
| Pathogen | Piperacillin/tazobactam | Piperacillin/tazobactam + Gentamicin | Piperacillin/tazobactam + Tobramycin |
|
||||
|:--------------|:------------------------|:-------------------------------------|:-------------------------------------|
|
||||
| Gram-negative | 88% (85-91%,N=641) | 99% (97-99%,N=691) | 98% (97-99%,N=693) |
|
||||
| Gram-positive | 86% (82-89%,N=345) | 98% (96-98%,N=1044) | 95% (93-97%,N=550) |
|
||||
|
||||
Like many other functions in this package,
|
||||
[`antibiogram()`](https://amr-for-r.org/reference/antibiogram.md) comes
|
||||
with support for 28 languages that are often detected automatically
|
||||
based on system language:
|
||||
|
||||
``` r
|
||||
antibiogram(example_isolates,
|
||||
antimicrobials = c("cipro", "tobra", "genta"), # any arbitrary name or code will work
|
||||
mo_transform = "gramstain",
|
||||
ab_transform = "name",
|
||||
language = "uk") # Ukrainian
|
||||
```
|
||||
|
||||
| Збудник | Гентаміцин | Тобраміцин | Ципрофлоксацин |
|
||||
|:--------------|:--------------------|:-------------------|:-------------------|
|
||||
| Грамнегативні | 96% (95-98%,N=684) | 96% (94-97%,N=686) | 91% (88-93%,N=684) |
|
||||
| Грампозитивні | 63% (60-66%,N=1170) | 34% (31-38%,N=665) | 77% (74-80%,N=724) |
|
||||
|
||||
### Interpreting and plotting MIC and SIR values
|
||||
|
||||
The `AMR` package allows interpretation of MIC and disk diffusion values
|
||||
based on CLSI and EUCAST. Moreover, the `ggplot2` package is extended
|
||||
with new scale functions, to allow plotting of log2-distributed MIC
|
||||
values and SIR values.
|
||||
|
||||
``` r
|
||||
library(ggplot2)
|
||||
library(AMR)
|
||||
|
||||
# generate some random values
|
||||
some_mic_values <- random_mic(size = 100)
|
||||
some_groups <- sample(LETTERS[1:5], 20, replace = TRUE)
|
||||
interpretation <- as.sir(some_mic_values,
|
||||
guideline = "EUCAST 2024",
|
||||
mo = "E. coli", # or any code or name resembling a known species
|
||||
ab = "Cipro") # or any code or name resembling an antibiotic
|
||||
|
||||
# create the plot
|
||||
ggplot(data.frame(mic = some_mic_values,
|
||||
group = some_groups,
|
||||
sir = interpretation),
|
||||
aes(x = group, y = mic, colour = sir)) +
|
||||
theme_minimal() +
|
||||
geom_boxplot(fill = NA, colour = "grey30") +
|
||||
geom_jitter(width = 0.25) +
|
||||
|
||||
# NEW scale function: plot MIC values to x, y, colour or fill
|
||||
scale_y_mic() +
|
||||
|
||||
# NEW scale function: write out S/I/R in any of the 20 supported languages
|
||||
# and set colourblind-friendly colours
|
||||
scale_colour_sir()
|
||||
```
|
||||
|
||||
[](https://amr-for-r.org/reference/plotting.md "Plotting Helpers for AMR Data Analysis")
|
||||
|
||||
### Calculating resistance per group
|
||||
|
||||
For a manual approach, you can use the `resistance` or
|
||||
[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)
|
||||
function:
|
||||
|
||||
``` r
|
||||
example_isolates %>%
|
||||
# group by ward:
|
||||
group_by(ward) %>%
|
||||
# calculate AMR using resistance() for gentamicin and tobramycin
|
||||
# and get their 95% confidence intervals using sir_confidence_interval():
|
||||
summarise(across(c(GEN, TOB),
|
||||
list(total_R = resistance,
|
||||
conf_int = function(x) sir_confidence_interval(x, collapse = "-"))))
|
||||
#> # A tibble: 3 × 5
|
||||
#> ward GEN_total_R GEN_conf_int TOB_total_R TOB_conf_int
|
||||
#> <chr> <dbl> <chr> <dbl> <chr>
|
||||
#> 1 Clinical 0.229 0.205-0.254 0.315 0.284-0.347
|
||||
#> 2 ICU 0.290 0.253-0.33 0.400 0.353-0.449
|
||||
#> 3 Outpatient 0.2 0.131-0.285 0.368 0.254-0.493
|
||||
```
|
||||
|
||||
Or use [antimicrobial
|
||||
selectors](https://amr-for-r.org/reference/antimicrobial_selectors.html)
|
||||
to select a series of antibiotic columns:
|
||||
|
||||
``` r
|
||||
library(AMR)
|
||||
library(dplyr)
|
||||
|
||||
out <- example_isolates %>%
|
||||
# group by ward:
|
||||
group_by(ward) %>%
|
||||
# calculate AMR using resistance(), over all aminoglycosides and polymyxins:
|
||||
summarise(across(c(aminoglycosides(), polymyxins()),
|
||||
resistance))
|
||||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||||
#> ℹ For `polymyxins()` using column 'COL' (colistin)
|
||||
#> Warning: There was 1 warning in `summarise()`.
|
||||
#> ℹ In argument: `across(c(aminoglycosides(), polymyxins()), resistance)`.
|
||||
#> ℹ In group 3: `ward = "Outpatient"`.
|
||||
#> Caused by warning:
|
||||
#> ! Introducing NA: only 23 results available for KAN in group: ward =
|
||||
#> "Outpatient" (`minimum` = 30).
|
||||
out
|
||||
#> # A tibble: 3 × 6
|
||||
#> ward GEN TOB AMK KAN COL
|
||||
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
|
||||
#> 1 Clinical 0.229 0.315 0.626 1 0.780
|
||||
#> 2 ICU 0.290 0.400 0.662 1 0.857
|
||||
#> 3 Outpatient 0.2 0.368 0.605 NA 0.889
|
||||
```
|
||||
|
||||
``` r
|
||||
# transform the antibiotic columns to names:
|
||||
out %>% set_ab_names()
|
||||
#> # A tibble: 3 × 6
|
||||
#> ward gentamicin tobramycin amikacin kanamycin colistin
|
||||
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
|
||||
#> 1 Clinical 0.229 0.315 0.626 1 0.780
|
||||
#> 2 ICU 0.290 0.400 0.662 1 0.857
|
||||
#> 3 Outpatient 0.2 0.368 0.605 NA 0.889
|
||||
```
|
||||
|
||||
``` r
|
||||
# transform the antibiotic column to ATC codes:
|
||||
out %>% set_ab_names(property = "atc")
|
||||
#> # A tibble: 3 × 6
|
||||
#> ward J01GB03 J01GB01 J01GB06 J01GB04 J01XB01
|
||||
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
|
||||
#> 1 Clinical 0.229 0.315 0.626 1 0.780
|
||||
#> 2 ICU 0.290 0.400 0.662 1 0.857
|
||||
#> 3 Outpatient 0.2 0.368 0.605 NA 0.889
|
||||
```
|
||||
|
||||
## What else can you do with this package?
|
||||
|
||||
This package was intended as a comprehensive toolbox for integrated AMR
|
||||
data analysis. This package can be used for:
|
||||
|
||||
- Reference for the taxonomy of microorganisms, since the package
|
||||
contains all microbial (sub)species from the List of Prokaryotic names
|
||||
with Standing in Nomenclature ([LPSN](https://lpsn.dsmz.de)) and the
|
||||
Global Biodiversity Information Facility
|
||||
([GBIF](https://www.gbif.org))
|
||||
([manual](https://amr-for-r.org/reference/mo_property.md))
|
||||
- Interpreting raw MIC and disk diffusion values, based on any CLSI or
|
||||
EUCAST guideline ([manual](https://amr-for-r.org/reference/as.sir.md))
|
||||
- Retrieving antimicrobial drug names, doses and forms of administration
|
||||
from clinical health care records
|
||||
([manual](https://amr-for-r.org/reference/ab_from_text.md))
|
||||
- Determining first isolates to be used for AMR data analysis
|
||||
([manual](https://amr-for-r.org/reference/first_isolate.md))
|
||||
- Calculating antimicrobial resistance
|
||||
([tutorial](https://amr-for-r.org/articles/AMR.md))
|
||||
- Determining multi-drug resistance (MDR) / multi-drug resistant
|
||||
organisms (MDRO) ([tutorial](https://amr-for-r.org/reference/mdro.md))
|
||||
- Calculating (empirical) susceptibility of both mono therapy and
|
||||
combination therapies
|
||||
([tutorial](https://amr-for-r.org/articles/AMR.md))
|
||||
- Apply AMR functions in predictive modelling
|
||||
([tutorial](https://amr-for-r.org/articles/AMR_with_tidymodels.md))
|
||||
- Getting properties for any microorganism (like Gram stain, species,
|
||||
genus or family)
|
||||
([manual](https://amr-for-r.org/reference/mo_property.md))
|
||||
- Getting properties for any antimicrobial (like name, code of
|
||||
EARS-Net/ATC/LOINC/PubChem, defined daily dose or trade name)
|
||||
([manual](https://amr-for-r.org/reference/ab_property.md))
|
||||
- Plotting antimicrobial resistance
|
||||
([tutorial](https://amr-for-r.org/articles/AMR.md))
|
||||
- Applying EUCAST expert rules
|
||||
([manual](https://amr-for-r.org/reference/eucast_rules.md))
|
||||
- Getting SNOMED codes of a microorganism, or getting properties of a
|
||||
microorganism based on a SNOMED code
|
||||
([manual](https://amr-for-r.org/reference/mo_property.md))
|
||||
- Getting LOINC codes of an antibiotic, or getting properties of an
|
||||
antibiotic based on a LOINC code
|
||||
([manual](https://amr-for-r.org/reference/ab_property.md))
|
||||
- Machine reading the EUCAST and CLSI guidelines from 2011-2021 to
|
||||
translate MIC values and disk diffusion diameters to SIR
|
||||
([link](https://amr-for-r.org/articles/datasets.md))
|
||||
- Principal component analysis for AMR
|
||||
([tutorial](https://amr-for-r.org/articles/PCA.md))
|
||||
|
||||
## Get this package
|
||||
|
||||
### Latest official version
|
||||
|
||||
[](https://cran.r-project.org/package=AMR)
|
||||
[](https://cran.r-project.org/package=AMR)
|
||||
|
||||
This package is available [here on the official R network
|
||||
(CRAN)](https://cran.r-project.org/package=AMR). Install this package in
|
||||
R from CRAN by using the command:
|
||||
|
||||
``` r
|
||||
install.packages("AMR")
|
||||
```
|
||||
|
||||
It will be downloaded and installed automatically. For RStudio, click on
|
||||
the menu *Tools* \> *Install Packages…* and then type in “AMR” and press
|
||||
Install.
|
||||
|
||||
**Note:** Not all functions on this website may be available in this
|
||||
latest release. To use all functions and data sets mentioned on this
|
||||
website, install the latest beta version.
|
||||
|
||||
### Latest beta version
|
||||
|
||||
[](https://github.com/msberends/AMR/actions/workflows/check-old-tinytest.yaml)
|
||||
[](https://github.com/msberends/AMR/actions/workflows/check-current-testthat.yaml)
|
||||
[](https://www.codefactor.io/repository/github/msberends/amr)
|
||||
[](https://codecov.io/gh/msberends/AMR?branch=main)
|
||||
|
||||
Please read our [Developer Guideline
|
||||
here](https://github.com/msberends/AMR/wiki/Developer-Guideline).
|
||||
|
||||
To install the latest and unpublished beta version:
|
||||
|
||||
``` r
|
||||
install.packages("AMR", repos = "beta.amr-for-r.org")
|
||||
|
||||
# if this does not work, try to install directly from GitHub using the 'remotes' package:
|
||||
remotes::install_github("msberends/AMR")
|
||||
```
|
||||
|
||||
## Get started
|
||||
|
||||
To find out how to conduct AMR data analysis, please [continue reading
|
||||
here to get started](https://amr-for-r.org/articles/AMR.md) or click a
|
||||
link in the [‘How to’ menu](https://amr-for-r.org/articles/).
|
||||
|
||||
## Partners
|
||||
|
||||
The initial development of this package was part of, related to, or made
|
||||
possible by the following non-profit organisations and initiatives:
|
||||
|
||||
[](https://www.rug.nl "University of Groningen")
|
||||
[](https://www.umcg.nl "University Medical Center Groningen")
|
||||
[](https://www.certe.nl "Certe Medical Diagnostics and Advice Foundation")
|
||||
[](https://www.deutschland-nederland.eu "EurHealth-1-Health")
|
||||
[](https://www.deutschland-nederland.eu "INTERREG")
|
||||
|
||||
## Copyright
|
||||
|
||||
This R package is free, open-source software and licensed under the [GNU
|
||||
General Public License v2.0
|
||||
(GPL-2)](https://amr-for-r.org/LICENSE-text.md). In a nutshell, this
|
||||
means that this package:
|
||||
|
||||
- May be used for commercial purposes
|
||||
|
||||
- May be used for private purposes
|
||||
|
||||
- May **not** be used for patent purposes
|
||||
|
||||
- May be modified, although:
|
||||
|
||||
- Modifications **must** be released under the same license when
|
||||
distributing the package
|
||||
- Changes made to the code **must** be documented
|
||||
|
||||
- May be distributed, although:
|
||||
|
||||
- Source code **must** be made available when the package is
|
||||
distributed
|
||||
- A copy of the license and copyright notice **must** be included with
|
||||
the package.
|
||||
|
||||
- Comes with a LIMITATION of liability
|
||||
|
||||
- Comes with NO warranty
|
||||
Reference in New Issue
Block a user