1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-18 07:40:24 +01:00

Built site for AMR@3.0.1.9003: ba30b08

This commit is contained in:
github-actions
2025-11-24 10:42:21 +00:00
parent 7d16891987
commit 141fc468f8
161 changed files with 21798 additions and 313 deletions

270
reference/count.md Normal file
View File

@@ -0,0 +1,270 @@
# Count Available Isolates
These functions can be used to count resistant/susceptible microbial
isolates. All functions support quasiquotation with pipes, can be used
in [`summarise()`](https://dplyr.tidyverse.org/reference/summarise.html)
from the `dplyr` package and also support grouped variables, see
*Examples*.
`count_resistant()` should be used to count resistant isolates,
`count_susceptible()` should be used to count susceptible isolates.
## Usage
``` r
count_resistant(..., only_all_tested = FALSE)
count_susceptible(..., only_all_tested = FALSE)
count_S(..., only_all_tested = FALSE)
count_SI(..., only_all_tested = FALSE)
count_I(..., only_all_tested = FALSE)
count_IR(..., only_all_tested = FALSE)
count_R(..., only_all_tested = FALSE)
count_all(..., only_all_tested = FALSE)
n_sir(..., only_all_tested = FALSE)
count_df(data, translate_ab = "name", language = get_AMR_locale(),
combine_SI = TRUE)
```
## Arguments
- ...:
One or more vectors (or columns) with antibiotic interpretations. They
will be transformed internally with
[`as.sir()`](https://amr-for-r.org/reference/as.sir.md) if needed.
- only_all_tested:
(for combination therapies, i.e. using more than one variable for
`...`): a [logical](https://rdrr.io/r/base/logical.html) to indicate
that isolates must be tested for all antimicrobials, see section
*Combination Therapy* below.
- data:
A [data.frame](https://rdrr.io/r/base/data.frame.html) containing
columns with class [`sir`](https://amr-for-r.org/reference/as.sir.md)
(see [`as.sir()`](https://amr-for-r.org/reference/as.sir.md)).
- translate_ab:
A column name of the
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md)
data set to translate the antibiotic abbreviations to, using
[`ab_property()`](https://amr-for-r.org/reference/ab_property.md).
- language:
Language of the returned text - the default is the current system
language (see
[`get_AMR_locale()`](https://amr-for-r.org/reference/translate.md))
and can also be set with the package option
[`AMR_locale`](https://amr-for-r.org/reference/AMR-options.md). Use
`language = NULL` or `language = ""` to prevent translation.
- combine_SI:
A [logical](https://rdrr.io/r/base/logical.html) to indicate whether
all values of S, SDD, and I must be merged into one, so the output
only consists of S+SDD+I vs. R (susceptible vs. resistant) - the
default is `TRUE`.
## Value
An [integer](https://rdrr.io/r/base/integer.html)
## Details
These functions are meant to count isolates. Use the
[`resistance()`](https://amr-for-r.org/reference/proportion.md)/[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)
functions to calculate microbial resistance/susceptibility.
The function `count_resistant()` is equal to the function `count_R()`.
The function `count_susceptible()` is equal to the function
`count_SI()`.
The function `n_sir()` is an alias of `count_all()`. They can be used to
count all available isolates, i.e. where all input antimicrobials have
an available result (S, I or R). Their use is equal to
[`n_distinct()`](https://dplyr.tidyverse.org/reference/n_distinct.html).
Their function is equal to
`count_susceptible(...) + count_resistant(...)`.
The function `count_df()` takes any variable from `data` that has an
[`sir`](https://amr-for-r.org/reference/as.sir.md) class (created with
[`as.sir()`](https://amr-for-r.org/reference/as.sir.md)) and counts the
number of S's, I's and R's. It also supports grouped variables. The
function [`sir_df()`](https://amr-for-r.org/reference/proportion.md)
works exactly like `count_df()`, but adds the percentage of S, I and R.
## Interpretation of SIR
In 2019, the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) has decided to change the definitions of susceptibility testing
categories S, I, and R (<https://www.eucast.org/newsiandr>).
This AMR package follows insight; use
[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)
(equal to
[`proportion_SI()`](https://amr-for-r.org/reference/proportion.md)) to
determine antimicrobial susceptibility and `count_susceptible()` (equal
to `count_SI()`) to count susceptible isolates.
## Combination Therapy
When using more than one variable for `...` (= combination therapy), use
`only_all_tested` to only count isolates that are tested for all
antimicrobials/variables that you test them for. See this example for
two antimicrobials, Drug A and Drug B, about how
[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)
works to calculate the %SI:
--------------------------------------------------------------------
only_all_tested = FALSE only_all_tested = TRUE
----------------------- -----------------------
Drug A Drug B considered considered considered considered
susceptible tested susceptible tested
-------- -------- ----------- ---------- ----------- ----------
S or I S or I X X X X
R S or I X X X X
<NA> S or I X X - -
S or I R X X X X
R R - X - X
<NA> R - - - -
S or I <NA> X X - -
R <NA> - - - -
<NA> <NA> - - - -
--------------------------------------------------------------------
Please note that, in combination therapies, for `only_all_tested = TRUE`
applies that:
count_S() + count_I() + count_R() = count_all()
proportion_S() + proportion_I() + proportion_R() = 1
and that, in combination therapies, for `only_all_tested = FALSE`
applies that:
count_S() + count_I() + count_R() >= count_all()
proportion_S() + proportion_I() + proportion_R() >= 1
Using `only_all_tested` has no impact when only using one antibiotic as
input.
## See also
[`proportion_*`](https://amr-for-r.org/reference/proportion.md) to
calculate microbial resistance and susceptibility.
## Examples
``` r
# example_isolates is a data set available in the AMR package.
# run ?example_isolates for more info.
# base R ------------------------------------------------------------
count_resistant(example_isolates$AMX) # counts "R"
#> [1] 804
count_susceptible(example_isolates$AMX) # counts "S" and "I"
#> [1] 546
count_all(example_isolates$AMX) # counts "S", "I" and "R"
#> [1] 1350
# be more specific
count_S(example_isolates$AMX)
#> [1] 543
count_SI(example_isolates$AMX)
#> [1] 546
count_I(example_isolates$AMX)
#> [1] 3
count_IR(example_isolates$AMX)
#> [1] 807
count_R(example_isolates$AMX)
#> [1] 804
# Count all available isolates
count_all(example_isolates$AMX)
#> [1] 1350
n_sir(example_isolates$AMX)
#> [1] 1350
# n_sir() is an alias of count_all().
# Since it counts all available isolates, you can
# calculate back to count e.g. susceptible isolates.
# These results are the same:
count_susceptible(example_isolates$AMX)
#> [1] 546
susceptibility(example_isolates$AMX) * n_sir(example_isolates$AMX)
#> [1] 546
# dplyr -------------------------------------------------------------
# \donttest{
if (require("dplyr")) {
example_isolates %>%
group_by(ward) %>%
summarise(
R = count_R(CIP),
I = count_I(CIP),
S = count_S(CIP),
n1 = count_all(CIP), # the actual total; sum of all three
n2 = n_sir(CIP), # same - analogous to n_distinct
total = n()
) # NOT the number of tested isolates!
# Number of available isolates for a whole antibiotic class
# (i.e., in this data set columns GEN, TOB, AMK, KAN)
example_isolates %>%
group_by(ward) %>%
summarise(across(aminoglycosides(), n_sir))
# Count co-resistance between amoxicillin/clav acid and gentamicin,
# so we can see that combination therapy does a lot more than mono therapy.
# Please mind that `susceptibility()` calculates percentages right away instead.
example_isolates %>% count_susceptible(AMC) # 1433
example_isolates %>% count_all(AMC) # 1879
example_isolates %>% count_susceptible(GEN) # 1399
example_isolates %>% count_all(GEN) # 1855
example_isolates %>% count_susceptible(AMC, GEN) # 1764
example_isolates %>% count_all(AMC, GEN) # 1936
# Get number of S+I vs. R immediately of selected columns
example_isolates %>%
select(AMX, CIP) %>%
count_df(translate = FALSE)
# It also supports grouping variables
example_isolates %>%
select(ward, AMX, CIP) %>%
group_by(ward) %>%
count_df(translate = FALSE)
}
#> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> # A tibble: 12 × 4
#> ward antibiotic interpretation value
#> <chr> <chr> <ord> <int>
#> 1 Clinical AMX SI 357
#> 2 Clinical AMX R 487
#> 3 Clinical CIP SI 741
#> 4 Clinical CIP R 128
#> 5 ICU AMX SI 158
#> 6 ICU AMX R 270
#> 7 ICU CIP SI 362
#> 8 ICU CIP R 85
#> 9 Outpatient AMX SI 31
#> 10 Outpatient AMX R 47
#> 11 Outpatient CIP SI 78
#> 12 Outpatient CIP R 15
# }
```