@@ -146,21 +146,21 @@ make the structure of your data generally look like this:
-
2025-01-28
+
2025-01-31
abcd
Escherichia coli
S
S
-
2025-01-28
+
2025-01-31
abcd
Escherichia coli
S
R
-
2025-01-28
+
2025-01-31
efgh
Escherichia coli
R
@@ -262,53 +262,54 @@ user input can be used:
Now we can thus clean our data:
our_data$bacteria<-as.mo(our_data$bacteria, info =TRUE)
-#> ℹ Microorganism translation was uncertain for four microorganisms. Run
-#> mo_uncertainties() to review these uncertainties, or use
-#> add_custom_microorganisms() to add custom entries.
+#> ℹ Microorganism translation was uncertain for four microorganisms. Run
+#> mo_uncertainties() to review these uncertainties, or use
+#> add_custom_microorganisms() to add custom entries.
Apparently, there was some uncertainty about the translation to
taxonomic codes. Let’s check this:
mo_uncertainties()
-#> Matching scores are based on the resemblance between the input and the full
-#> taxonomic name, and the pathogenicity in humans. See ?mo_matching_score.
+#> Matching scores are based on the resemblance between the input and the full
+#> taxonomic name, and the pathogenicity in humans. See ?mo_matching_score.
+#> Colour keys: 0.000-0.549 0.550-0.649 0.650-0.749 0.750-1.000 #>
-#> --------------------------------------------------------------------------------
-#> "E. coli" -> Escherichia coli (B_ESCHR_COLI, 0.688)
-#> Also matched: Enterococcus crotali (0.650), Escherichia coli coli
-#> (0.643), Escherichia coli expressing (0.611), Enterobacter cowanii
-#> (0.600), Enterococcus columbae (0.595), Enterococcus camelliae (0.591),
-#> Enterococcus casseliflavus (0.577), Enterobacter cloacae cloacae
-#> (0.571), Enterobacter cloacae complex (0.571), and Enterobacter cloacae
-#> dissolvens (0.565)
-#> --------------------------------------------------------------------------------
-#> "K. pneumoniae" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786)
-#> Also matched: Klebsiella pneumoniae ozaenae (0.707), Klebsiella
-#> pneumoniae pneumoniae (0.688), Klebsiella pneumoniae rhinoscleromatis
-#> (0.658), Klebsiella pasteurii (0.500), Klebsiella planticola (0.500),
-#> Kingella potus (0.400), Kluyveromyces pseudotropicale (0.386),
-#> Kluyveromyces pseudotropicalis (0.363), Kosakonia pseudosacchari
-#> (0.361), and Kluyveromyces pseudotropicalis pseudotropicalis (0.361)
-#> --------------------------------------------------------------------------------
-#> "S. aureus" -> Staphylococcus aureus (B_STPHY_AURS, 0.690)
-#> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus
-#> argenteus (0.625), Staphylococcus aureus anaerobius (0.625),
-#> Staphylococcus auricularis (0.615), Salmonella Aurelianis (0.595),
-#> Salmonella Aarhus (0.588), Salmonella Amounderness (0.587),
-#> Staphylococcus argensis (0.587), Streptococcus australis (0.587), and
-#> Salmonella choleraesuis arizonae (0.562)
-#> --------------------------------------------------------------------------------
-#> "S. pneumoniae" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750)
-#> Also matched: Streptococcus pseudopneumoniae (0.700), Streptococcus
-#> phocae salmonis (0.552), Serratia proteamaculans quinovora (0.545),
-#> Streptococcus pseudoporcinus (0.536), Staphylococcus piscifermentans
-#> (0.533), Staphylococcus pseudintermedius (0.532), Serratia
-#> proteamaculans proteamaculans (0.526), Streptococcus gallolyticus
-#> pasteurianus (0.526), Salmonella Portanigra (0.524), and Streptococcus
-#> periodonticum (0.519)
+#> --------------------------------------------------------------------------------
+#> "E. coli" -> Escherichia coli (B_ESCHR_COLI, 0.688)
+#> Also matched: Enterococcus crotali (0.650), Escherichia coli coli
+#> (0.643), Escherichia coli expressing (0.611), Enterobacter cowanii
+#> (0.600), Enterococcus columbae (0.595), Enterococcus camelliae (0.591),
+#> Enterococcus casseliflavus (0.577), Enterobacter cloacae cloacae
+#> (0.571), Enterobacter cloacae complex (0.571), and Enterobacter cloacae
+#> dissolvens (0.565)
+#> --------------------------------------------------------------------------------
+#> "K. pneumoniae" -> Klebsiella pneumoniae (B_KLBSL_PNMN, 0.786)
+#> Also matched: Klebsiella pneumoniae ozaenae (0.707), Klebsiella
+#> pneumoniae pneumoniae (0.688), Klebsiella pneumoniae rhinoscleromatis
+#> (0.658), Klebsiella pasteurii (0.500), Klebsiella planticola (0.500),
+#> Kingella potus (0.400), Kluyveromyces pseudotropicale (0.386),
+#> Kluyveromyces pseudotropicalis (0.363), Kosakonia pseudosacchari
+#> (0.361), and Kluyveromyces pseudotropicalis pseudotropicalis (0.361)
+#> --------------------------------------------------------------------------------
+#> "S. aureus" -> Staphylococcus aureus (B_STPHY_AURS, 0.690)
+#> Also matched: Staphylococcus aureus aureus (0.643), Staphylococcus
+#> argenteus (0.625), Staphylococcus aureus anaerobius (0.625),
+#> Staphylococcus auricularis (0.615), Salmonella Aurelianis (0.595),
+#> Salmonella Aarhus (0.588), Salmonella Amounderness (0.587),
+#> Staphylococcus argensis (0.587), Streptococcus australis (0.587), and
+#> Salmonella choleraesuis arizonae (0.562)
+#> --------------------------------------------------------------------------------
+#> "S. pneumoniae" -> Streptococcus pneumoniae (B_STRPT_PNMN, 0.750)
+#> Also matched: Streptococcus pseudopneumoniae (0.700), Streptococcus
+#> phocae salmonis (0.552), Serratia proteamaculans quinovora (0.545),
+#> Streptococcus pseudoporcinus (0.536), Staphylococcus piscifermentans
+#> (0.533), Staphylococcus pseudintermedius (0.532), Serratia
+#> proteamaculans proteamaculans (0.526), Streptococcus gallolyticus
+#> pasteurianus (0.526), Salmonella Portanigra (0.524), and Streptococcus
+#> periodonticum (0.519)#>
-#> Only the first 10 other matches of each record are shown. Run
-#> print(mo_uncertainties(), n = ...) to view more entries, or save
-#> mo_uncertainties() to an object.
+#> Only the first 10 other matches of each record are shown. Run
+#> print(mo_uncertainties(), n = ...) to view more entries, or save
+#> mo_uncertainties() to an object.
That’s all good.
@@ -338,16 +339,16 @@ dplyr:
#> # A tibble: 3,000 × 8#> patient_id hospital date bacteria AMX AMC CIP GEN #> <chr><chr><date><mo><sir><sir><sir><sir>
-#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S
-#> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S
-#> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S
-#> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S
-#> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S
-#> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S
-#> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S
-#> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S
-#> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S
-#> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S
+#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S
+#> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S
+#> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S
+#> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S
+#> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S
+#> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S
+#> 7 J8 A 2016-06-14 B_ESCHR_COLI R S S S
+#> 8 M3 A 2015-10-25 B_ESCHR_COLI R S S S
+#> 9 J3 A 2019-06-19 B_ESCHR_COLI S S S S
+#> 10 G6 A 2015-04-27 B_STPHY_AURS S S S S #> # ℹ 2,990 more rows
This is basically it for the cleaning, time to start the data
inclusion.
our_data<-our_data%>%mutate(first =first_isolate(info =TRUE))
-#> ℹ Determining first isolates using an episode length of 365 days
-#> ℹ Using column 'bacteria' as input for col_mo.
-#> ℹ Using column 'date' as input for col_date.
-#> ℹ Using column 'patient_id' as input for col_patient_id.
-#> ℹ Basing inclusion on all antimicrobial results, using a points threshold
-#> of 2
-#> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a
-#> microbial ID was available)
+#> ℹ Determining first isolates using an episode length of 365 days
+#> ℹ Using column 'bacteria' as input for col_mo.
+#> ℹ Using column 'date' as input for col_date.
+#> ℹ Using column 'patient_id' as input for col_patient_id.
+#> ℹ Basing inclusion on all antimicrobial results, using a points threshold
+#> of 2
+#> => Found 2,724 'phenotype-based' first isolates (90.8% of total where a
+#> microbial ID was available)
So only 91% is suitable for resistance analysis! We can now filter on
it with the filter() function, also from the
dplyr package:
@@ -420,16 +421,16 @@ like:
#> # A tibble: 2,724 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>
-#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE
-#> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE
-#> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S TRUE
-#> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE
-#> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE
-#> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE
-#> 7 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE
-#> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE
-#> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE
-#> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE
+#> 1 J3 A 2012-11-21 B_ESCHR_COLI R I S S TRUE
+#> 2 R7 A 2018-04-03 B_KLBSL_PNMN R I S S TRUE
+#> 3 P3 A 2014-09-19 B_ESCHR_COLI R S S S TRUE
+#> 4 P10 A 2015-12-10 B_ESCHR_COLI S I S S TRUE
+#> 5 B7 A 2015-03-02 B_ESCHR_COLI S S S S TRUE
+#> 6 W3 A 2018-03-31 B_STPHY_AURS R S R S TRUE
+#> 7 M3 A 2015-10-25 B_ESCHR_COLI R S S S TRUE
+#> 8 J3 A 2019-06-19 B_ESCHR_COLI S S S S TRUE
+#> 9 G6 A 2015-04-27 B_STPHY_AURS S S S S TRUE
+#> 10 P4 A 2011-06-21 B_ESCHR_COLI S S S S TRUE #> # ℹ 2,714 more rows
Time for the analysis.
@@ -519,39 +520,39 @@ in:
our_data_1st%>%select(date, aminoglycosides())
-#> ℹ For aminoglycosides() using column 'GEN' (gentamicin)
+#> ℹ For aminoglycosides() using column 'GEN' (gentamicin)#> # A tibble: 2,724 × 2#> date GEN #> <date><sir>
-#> 1 2012-11-21 S
-#> 2 2018-04-03 S
-#> 3 2014-09-19 S
-#> 4 2015-12-10 S
-#> 5 2015-03-02 S
-#> 6 2018-03-31 S
-#> 7 2015-10-25 S
-#> 8 2019-06-19 S
-#> 9 2015-04-27 S
-#> 10 2011-06-21 S
+#> 1 2012-11-21 S
+#> 2 2018-04-03 S
+#> 3 2014-09-19 S
+#> 4 2015-12-10 S
+#> 5 2015-03-02 S
+#> 6 2018-03-31 S
+#> 7 2015-10-25 S
+#> 8 2019-06-19 S
+#> 9 2015-04-27 S
+#> 10 2011-06-21 S #> # ℹ 2,714 more rowsour_data_1st%>%select(bacteria, betalactams())
-#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
-#> (amoxicillin/clavulanic acid)
+#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
+#> (amoxicillin/clavulanic acid)#> # A tibble: 2,724 × 3#> bacteria AMX AMC #> <mo><sir><sir>
-#> 1 B_ESCHR_COLI R I
-#> 2 B_KLBSL_PNMN R I
-#> 3 B_ESCHR_COLI R S
-#> 4 B_ESCHR_COLI S I
-#> 5 B_ESCHR_COLI S S
-#> 6 B_STPHY_AURS R S
-#> 7 B_ESCHR_COLI R S
-#> 8 B_ESCHR_COLI S S
-#> 9 B_STPHY_AURS S S
-#> 10 B_ESCHR_COLI S S
+#> 1B_ESCHR_COLI R I
+#> 2B_KLBSL_PNMN R I
+#> 3B_ESCHR_COLI R S
+#> 4B_ESCHR_COLI S I
+#> 5B_ESCHR_COLI S S
+#> 6B_STPHY_AURS R S
+#> 7B_ESCHR_COLI R S
+#> 8B_ESCHR_COLI S S
+#> 9B_STPHY_AURS S S
+#> 10B_ESCHR_COLI S S #> # ℹ 2,714 more rowsour_data_1st%>%
@@ -559,73 +560,73 @@ in:
#> # A tibble: 2,724 × 5#> bacteria AMX AMC CIP GEN #> <mo><sir><sir><sir><sir>
-#> 1 B_ESCHR_COLI R I S S
-#> 2 B_KLBSL_PNMN R I S S
-#> 3 B_ESCHR_COLI R S S S
-#> 4 B_ESCHR_COLI S I S S
-#> 5 B_ESCHR_COLI S S S S
-#> 6 B_STPHY_AURS R S R S
-#> 7 B_ESCHR_COLI R S S S
-#> 8 B_ESCHR_COLI S S S S
-#> 9 B_STPHY_AURS S S S S
-#> 10 B_ESCHR_COLI S S S S
+#> 1B_ESCHR_COLI R I S S
+#> 2B_KLBSL_PNMN R I S S
+#> 3B_ESCHR_COLI R S S S
+#> 4B_ESCHR_COLI S I S S
+#> 5B_ESCHR_COLI S S S S
+#> 6B_STPHY_AURS R S R S
+#> 7B_ESCHR_COLI R S S S
+#> 8B_ESCHR_COLI S S S S
+#> 9B_STPHY_AURS S S S S
+#> 10B_ESCHR_COLI S S S S #> # ℹ 2,714 more rows# filtering using AB selectors is also possible:our_data_1st%>%filter(any(aminoglycosides()=="R"))
-#> ℹ For aminoglycosides() using column 'GEN' (gentamicin)
+#> ℹ For aminoglycosides() using column 'GEN' (gentamicin)#> # A tibble: 981 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>
-#> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE
-#> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE
-#> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE
-#> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE
-#> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE
-#> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE
-#> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE
-#> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE
-#> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE
-#> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE
+#> 1 J5 A 2017-12-25 B_STRPT_PNMN R S S R TRUE
+#> 2 X1 A 2017-07-04 B_STPHY_AURS R S S R TRUE
+#> 3 B3 A 2016-07-24 B_ESCHR_COLI S S S R TRUE
+#> 4 V7 A 2012-04-03 B_ESCHR_COLI S S S R TRUE
+#> 5 C9 A 2017-03-23 B_ESCHR_COLI S S S R TRUE
+#> 6 R1 A 2018-06-10 B_STPHY_AURS S S S R TRUE
+#> 7 S2 A 2013-07-19 B_STRPT_PNMN S S S R TRUE
+#> 8 P5 A 2019-03-09 B_STPHY_AURS S S S R TRUE
+#> 9 Q8 A 2019-08-10 B_STPHY_AURS S S S R TRUE
+#> 10 K5 A 2013-03-15 B_STRPT_PNMN S S S R TRUE #> # ℹ 971 more rowsour_data_1st%>%filter(all(betalactams()=="R"))
-#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
-#> (amoxicillin/clavulanic acid)
+#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
+#> (amoxicillin/clavulanic acid)#> # A tibble: 462 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>
-#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
-#> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE
-#> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE
-#> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE
-#> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE
-#> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE
-#> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE
-#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
-#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
-#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
+#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
+#> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE
+#> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE
+#> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE
+#> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE
+#> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE
+#> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE
+#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
+#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
+#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows# even works in base R (since R 3.0):our_data_1st[all(betalactams()=="R"), ]
-#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
-#> (amoxicillin/clavulanic acid)
+#> ℹ For betalactams() using columns 'AMX' (amoxicillin) and 'AMC'
+#> (amoxicillin/clavulanic acid)#> # A tibble: 462 × 9#> patient_id hospital date bacteria AMX AMC CIP GEN first#> <chr><chr><date><mo><sir><sir><sir><sir><lgl>
-#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
-#> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE
-#> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE
-#> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE
-#> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE
-#> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE
-#> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE
-#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
-#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
-#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE
+#> 1 M7 A 2013-07-22 B_STRPT_PNMN R R S S TRUE
+#> 2 R10 A 2013-12-20 B_STPHY_AURS R R S S TRUE
+#> 3 R7 A 2015-10-25 B_STPHY_AURS R R S S TRUE
+#> 4 R8 A 2019-10-25 B_STPHY_AURS R R S S TRUE
+#> 5 B6 A 2016-11-20 B_ESCHR_COLI R R R R TRUE
+#> 6 I7 A 2015-08-19 B_ESCHR_COLI R R S S TRUE
+#> 7 N3 A 2014-12-29 B_STRPT_PNMN R R R S TRUE
+#> 8 Q2 A 2019-09-22 B_ESCHR_COLI R R S S TRUE
+#> 9 X7 A 2011-03-20 B_ESCHR_COLI R R S R TRUE
+#> 10 V1 A 2018-08-07 B_STPHY_AURS R R S S TRUE #> # ℹ 452 more rows
@@ -666,16 +667,16 @@ like:
#> # A tibble: 2,000 × 46#> date patient age gender ward mo PEN OXA FLC AMX #> <date><chr><dbl><chr><chr><mo><sir><sir><sir><sir>
-#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
-#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
-#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
-#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
-#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA
+#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
+#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
+#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
+#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
+#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA#> # ℹ 1,990 more rows#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
@@ -693,9 +694,9 @@ previously mentioned antibiotic class selectors:
antibiogram(example_isolates, antibiotics =c(aminoglycosides(), carbapenems()))
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
-#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
+#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
@@ -823,8 +824,8 @@ language to be Spanish using the language argument:
antibiotics =aminoglycosides(), ab_transform ="name", language ="es")
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
-#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
+#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
@@ -947,9 +948,9 @@ argument must be used. This can be any column in the data, or e.g. an
antibiogram(example_isolates, antibiotics =c(aminoglycosides(), carbapenems()), syndromic_group ="ward")
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
-#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
+#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
+#> ℹ For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem)
diff --git a/articles/AMR_for_Python.html b/articles/AMR_for_Python.html
index b5e1e4619..9ed28c2ae 100644
--- a/articles/AMR_for_Python.html
+++ b/articles/AMR_for_Python.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/articles/AMR_with_tidymodels.html b/articles/AMR_with_tidymodels.html
index 4c50f96de..0b29ebef3 100644
--- a/articles/AMR_with_tidymodels.html
+++ b/articles/AMR_with_tidymodels.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -162,14 +162,14 @@ package.
mo =as.factor(mo_gramstain(mo)))%>%# drop NAs - the ones without a Gramstain (fungi, etc.)drop_na()
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
-#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#> ℹ For betalactams() using columns 'PEN' (benzylpenicillin), 'OXA'
-#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
-#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP'
-#> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM'
-#> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime),
-#> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem)
+#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
+#> ℹ For betalactams() using columns 'PEN' (benzylpenicillin), 'OXA'
+#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
+#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP'
+#> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM'
+#> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime),
+#> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem)
Explanation:
@@ -270,14 +270,14 @@ performance.
# Fit the workflow to the training datafitted_workflow<-resistance_workflow%>%fit(training_data)# Train the model
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
-#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
-#> ℹ For betalactams() using columns 'PEN' (benzylpenicillin), 'OXA'
-#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
-#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP'
-#> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM'
-#> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime),
-#> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem)
+#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
+#> ℹ For betalactams() using columns 'PEN' (benzylpenicillin), 'OXA'
+#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
+#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP'
+#> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM'
+#> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime),
+#> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem)
Explanation:
diff --git a/articles/EUCAST.html b/articles/EUCAST.html
index bee709e5d..71e296a92 100644
--- a/articles/EUCAST.html
+++ b/articles/EUCAST.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/articles/MDR.html b/articles/MDR.html
index 57750802f..f10522398 100644
--- a/articles/MDR.html
+++ b/articles/MDR.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -172,11 +172,11 @@ will help reading it if your console supports colours.
custom#> A set of custom MDRO rules:
-#> 1. If CIP is "R" and age is higher than 60 then: Elderly Type A
-#> 2. If ERY is "R" and age is higher than 60 then: Elderly Type B
-#> 3. Otherwise: Negative
+#> 1. If CIP is R and age is higher than 60 then: Elderly Type A
+#> 2. If ERY is R and age is higher than 60 then: Elderly Type B
+#> 3. Otherwise: Negative#>
-#> Unmatched rows will return NA.
+#> Unmatched rows will return NA.#> Results will be of class 'factor', with ordered levels: Negative < Elderly Type A < Elderly Type B
The outcome of the function can be used for the
guideline argument in the mdro() function:
@@ -212,8 +212,8 @@ on this data set, we get:
example_isolates%>%mdro()%>%freq()# show frequency table of the result
-#> Warning: in mdro(): NA introduced for isolates where the available percentage of
-#> antimicrobial classes was below 50% (set with pct_required_classes)
+#> Warning: in mdro(): NA introduced for isolates where the available percentage of
+#> antimicrobial classes was below 50% (set with pct_required_classes)
diff --git a/articles/PCA.html b/articles/PCA.html
index 5d6fa0e88..2c6a6eab4 100644
--- a/articles/PCA.html
+++ b/articles/PCA.html
@@ -31,7 +31,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -183,8 +183,8 @@ that contain numeric values in all selected variables, so we now only
need to do:
pca_result<-pca(resistance_data)
-#> ℹ Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT",
-#> "TMP", and "TOB". Total observations available: 7.
+#> ℹ Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT",
+#> "TMP", and "TOB". Total observations available: 7.
The result can be reviewed with the good old summary()
function:
(this beta version will eventually become v3.0. We’re happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using the instructions here.)
-
A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental)
+
A New Milestone: AMR v3.0 with One Health Support (= Human + Veterinary + Environmental)
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the University of Prince Edward Island’s Atlantic Veterinary College, Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
-
Breaking
+
Breaking
Removed all functions and references that used the deprecated rsi class, which were all replaced with their sir equivalents two years ago
-
New
+
New
One Health implementation
Function as.sir() now has extensive support for veterinary breakpoints from CLSI. Use breakpoint_type = "animal" and set the host argument to a variable that contains animal species names.
@@ -109,7 +109,7 @@
-
Changed
+
Changed
SIR interpretation
It is now possible to use column names for argument ab, mo, and uti: as.sir(..., ab = "column1", mo = "column2", uti = "column3"). This greatly improves the flexibility for users.
Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and NI.
@@ -170,9 +170,10 @@
Implemented the new Dutch national MDRO guideline (SRI-richtlijn BRMO, Nov 2024)
Added arguments esbl, carbapenemase, mecA, mecC, vanA, vanB to denote column names or logical values indicating presence of these genes (or production of their proteins)
+
Added console colours support of sir class for Positron
-
Other
+
Other
Added Dr. Larisse Bolton as contributor for her fantastic implementation of WISCA in a mathematically solid way
Added Matthew Saab, Dr. Jordan Stull, and Prof. Javier Sanchez as contributors for their tremendous input on veterinary breakpoints and interpretations
Greatly improved vctrs integration, a Tidyverse package working in the background for many Tidyverse functions. For users, this means that functions such as dplyr’s bind_rows(), rowwise() and c_across() are now supported for e.g. columns of class mic. Despite this, this AMR package is still zero-dependent on any other package, including dplyr and vctrs.
@@ -180,7 +181,7 @@
Stopped support for SAS (.xpt) files, since their file structure and extremely inefficient and requires more disk space than GitHub allows in a single commit.
-
Older Versions
+
Older Versions
This changelog only contains changes from AMR v3.0 (February 2025) and later.
diff --git a/pkgdown.yml b/pkgdown.yml
index 57702f645..5c5051abd 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -12,7 +12,7 @@ articles:
resistance_predict: resistance_predict.html
welcome_to_AMR: welcome_to_AMR.html
WHONET: WHONET.html
-last_built: 2025-01-28T14:22Z
+last_built: 2025-01-31T15:05Z
urls:
reference: https://msberends.github.io/AMR/reference
article: https://msberends.github.io/AMR/articles
diff --git a/reference/AMR-deprecated.html b/reference/AMR-deprecated.html
index 6025a4696..fdd77d252 100644
--- a/reference/AMR-deprecated.html
+++ b/reference/AMR-deprecated.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/AMR-options.html b/reference/AMR-options.html
index 4229a3c05..0d35a07a1 100644
--- a/reference/AMR-options.html
+++ b/reference/AMR-options.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/AMR.html b/reference/AMR.html
index cb67d5b35..16970c408 100644
--- a/reference/AMR.html
+++ b/reference/AMR.html
@@ -21,7 +21,7 @@ The AMR package is available in English, Chinese, Czech, Danish, Dutch, Finnish,
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/WHOCC.html b/reference/WHOCC.html
index 6a3ea17d6..7b416aebe 100644
--- a/reference/WHOCC.html
+++ b/reference/WHOCC.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/WHONET.html b/reference/WHONET.html
index 35c51e757..1a0b0a4d4 100644
--- a/reference/WHONET.html
+++ b/reference/WHONET.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/ab_from_text.html b/reference/ab_from_text.html
index aa06ed76c..7caeb1fe1 100644
--- a/reference/ab_from_text.html
+++ b/reference/ab_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/ab_property.html b/reference/ab_property.html
index e684ef372..5a343a44c 100644
--- a/reference/ab_property.html
+++ b/reference/ab_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/add_custom_antimicrobials.html b/reference/add_custom_antimicrobials.html
index 2f5a0f1ef..19ad23e10 100644
--- a/reference/add_custom_antimicrobials.html
+++ b/reference/add_custom_antimicrobials.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -113,7 +113,7 @@
group ="Test Group"))
-#> ℹ Added one record to the internal antibiotics data set.
+#>ℹ Added one record to the internal antibiotics data set.# "testab" is now a new antibiotic:as.ab("testab")
@@ -182,7 +182,7 @@
group ="Beta-lactams/penicillins"))
-#> ℹ Added one record to the internal antibiotics data set.
+#>ℹ Added one record to the internal antibiotics data set.ab_atc("Co-fluampicil")#> [1] "J01CR50"ab_name("J01CR50")
@@ -198,8 +198,8 @@
#> random_column coflu ampicillin#> 1 some value S Rx[, betalactams()]
-#> ℹ For betalactams() using columns 'coflu' (co-fluampicil) and
-#> 'ampicillin'
+#>ℹ For betalactams() using columns 'coflu' (co-fluampicil) and
+#> 'ampicillin'#> coflu ampicillin#> 1 S R# }
diff --git a/reference/add_custom_microorganisms.html b/reference/add_custom_microorganisms.html
index 2e3ab4c58..ffdd64d64 100644
--- a/reference/add_custom_microorganisms.html
+++ b/reference/add_custom_microorganisms.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -108,8 +108,8 @@
species ="asburiae/cloacae"))
-#> ℹ Added Enterobacter asburiae/cloacae to the internal microorganisms data
-#> set.
+#>ℹ Added Enterobacter asburiae/cloacae to the internal microorganisms data
+#> set.# E. asburiae/cloacae is now a new microorganism:mo_name("Enterobacter asburiae/cloacae")
@@ -203,8 +203,8 @@
SPECIES ="SPECIES"))
-#> ℹ Added Bacteroides/Parabacteroides to the internal microorganisms data
-#> set.
+#>ℹ Added Bacteroides/Parabacteroides to the internal microorganisms data
+#> set.mo_name("BACTEROIDES / PARABACTEROIDES")#> [1] "Bacteroides/Parabacteroides"mo_rank("BACTEROIDES / PARABACTEROIDES")
@@ -223,8 +223,8 @@
subspecies =c("complex", "")))
-#> ℹ Added Citrobacter braakii complex and Citrobacter freundii complex to the
-#> internal microorganisms data set.
+#>ℹ Added Citrobacter braakii complex and Citrobacter freundii complex to the
+#> internal microorganisms data set.mo_name(c("C. freundii complex", "C. braakii complex"))#> [1] "Citrobacter freundii complex" "Citrobacter braakii complex" mo_species(c("C. freundii complex", "C. braakii complex"))
diff --git a/reference/age.html b/reference/age.html
index 75ae4fade..577719502 100644
--- a/reference/age.html
+++ b/reference/age.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -111,16 +111,16 @@
df#> birth_date age age_exact age_at_y2k
-#> 1 1965-12-05 59 59.14795 34
-#> 2 1980-03-01 44 44.91233 19
-#> 3 1949-11-01 75 75.24110 50
-#> 4 1947-02-14 77 77.95342 52
-#> 5 1940-02-19 84 84.93973 59
-#> 6 1988-01-10 37 37.04932 11
-#> 7 1997-08-27 27 27.42192 2
-#> 8 1978-01-26 47 47.00548 21
-#> 9 1972-06-17 52 52.61644 27
-#> 10 1986-08-10 38 38.46849 13
+#> 1 1965-12-05 59 59.15616 34
+#> 2 1980-03-01 44 44.92055 19
+#> 3 1949-11-01 75 75.24932 50
+#> 4 1947-02-14 77 77.96164 52
+#> 5 1940-02-19 84 84.94795 59
+#> 6 1988-01-10 37 37.05753 11
+#> 7 1997-08-27 27 27.43014 2
+#> 8 1978-01-26 47 47.01370 21
+#> 9 1972-06-17 52 52.62466 27
+#> 10 1986-08-10 38 38.47671 13
diff --git a/reference/as.mic.html b/reference/as.mic.html
index c64af0674..d25cf7fb6 100644
--- a/reference/as.mic.html
+++ b/reference/as.mic.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -177,11 +177,12 @@
guideline ="EUCAST")#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'AMX' (amoxicillin), EUCAST 2024...
-#> NOTE
-#> • Multiple breakpoints available for amoxicillin (AMX) in Streptococcus pneumoniae - assuming body site 'Meningitis'.
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting MIC values: 'AMX' (amoxicillin), EUCAST 2024...
+#> NOTE
+#> • Multiple breakpoints available for amoxicillin (AMX) in Streptococcus pneumoniae - assuming body site 'Meningitis'.#> Class 'sir'#> [1] Ras.sir(
@@ -191,11 +192,12 @@
guideline ="EUCAST")#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'AMX' (amoxicillin), EUCAST 2024...
-#> NOTE
-#> • Multiple breakpoints available for amoxicillin (AMX) in Streptococcus pneumoniae - assuming body site 'Meningitis'.
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting MIC values: 'AMX' (amoxicillin), EUCAST 2024...
+#> NOTE
+#> • Multiple breakpoints available for amoxicillin (AMX) in Streptococcus pneumoniae - assuming body site 'Meningitis'.#> Class 'sir'#> [1] S R R R
diff --git a/reference/as.mo.html b/reference/as.mo.html
index f7e8ab1ad..7dfc4dac6 100644
--- a/reference/as.mo.html
+++ b/reference/as.mo.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -315,9 +315,9 @@
mo_gramstain("ESCO")#> [1] "Gram-negative"mo_is_intrinsic_resistant("ESCCOL", ab ="vanco")
-#> ℹ Determining intrinsic resistance based on 'EUCAST Expert Rules' and
-#> 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3 (2021). This note
-#> will be shown once per session.
+#>ℹ Determining intrinsic resistance based on 'EUCAST Expert Rules' and
+#> 'EUCAST Intrinsic Resistance and Unusual Phenotypes' v3.3 (2021). This note
+#> will be shown once per session.#> [1] TRUE# }
diff --git a/reference/as.sir.html b/reference/as.sir.html
index 093a7523a..094bf8c96 100644
--- a/reference/as.sir.html
+++ b/reference/as.sir.html
@@ -21,7 +21,7 @@ All breakpoints used for interpretation are available in our clinical_breakpoint
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -310,16 +310,16 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
#># A tibble: 2,000 × 46#> date patient age gender ward mo PEN OXA FLC AMX #><date><chr><dbl><chr><chr><mo><sir><sir><sir><sir>
-#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
-#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
-#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
-#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
-#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#>10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA
+#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
+#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
+#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
+#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
+#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#>10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA#># ℹ 1,990 more rows#># ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,#># CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
@@ -530,198 +530,222 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
mutate_at(vars(cipro:genta), as.sir, mo ="E. coli", uti =TRUE)}#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'amoxicillin' (AMX) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'amoxicillin' (AMX) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
-#> Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin) based on
-#> column 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for tobramycin (TOB) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Interpreting disk diffusion zones: 'genta' (GEN, gentamicin) based on
-#> column 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for gentamicin (GEN) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting MIC values: 'amoxicillin' (AMX) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'amoxicillin' (AMX) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'amoxicillin' (AMX) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
-#> Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin) based on
-#> column 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for tobramycin (TOB) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting MIC values: 'amoxicillin' (AMX) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
+#>Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin) based on
+#>column 'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for tobramycin (TOB) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting disk diffusion zones: 'genta' (GEN, gentamicin) based on
+#>column 'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for gentamicin (GEN) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'amoxicillin' (AMX) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
-#> 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
-#> Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin) based on
-#> column 'microorganism', EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for tobramycin (TOB) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'amoxicillin' (AMX), 'cipro' (CIP, ciprofloxacin),
-#> 'tobra' (TOB, tobramycin), and 'genta' (GEN, gentamicin) based on column
-#> 'bacteria', CLSI 2024...
-#> OK
+#>Interpreting MIC values: 'amoxicillin' (AMX) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'amoxicillin' (AMX), 'cipro' (CIP, ciprofloxacin),
-#> 'tobra' (TOB, tobramycin), and 'genta' (GEN, gentamicin) based on column
-#> 'bacteria', CLSI 2024...
-#> OK
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), CLSI 2024...
-#> OK
-#> Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin), CLSI 2024...
-#> OK
-#> Interpreting disk diffusion zones: 'genta' (GEN, gentamicin), CLSI 2024...
-#> OK
+#>Interpreting MIC values: 'amoxicillin' (AMX) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
+#>Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin) based on
+#>column 'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for tobramycin (TOB) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), CLSI 2024...
-#> OK
-#> Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin), CLSI 2024...
-#> OK
-#> Interpreting disk diffusion zones: 'genta' (GEN, gentamicin), CLSI 2024...
-#> OK
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> ℹ Assuming breakpoint_type = "animal", since host is set.
-#> ℹ Please note that in the absence of specific veterinary breakpoints for
-#> certain animal hosts, the CLSI guideline VET09 will be applied where
-#> possible.
-#> Interpreting MIC values: 'amoxicillin' (AMX), 'cipro' (CIP, ciprofloxacin),
-#> 'tobra' (TOB, tobramycin), and 'genta' (GEN, gentamicin) based on column
-#> 'bacteria', CLSI 2024...
-#> OK
+#>Interpreting MIC values: 'amoxicillin' (AMX) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin) based on column
+#>'microorganism', EUCAST 2024...
+#> NOTE
+#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
+#>Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin) based on
+#>column 'microorganism', EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for tobramycin (TOB) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> ℹ Assuming breakpoint_type = "animal", since host is set.
-#> ℹ Please note that in the absence of specific veterinary breakpoints for
-#> certain animal hosts, the CLSI guideline VET09 will be applied where
-#> possible.
-#> Interpreting MIC values: 'amoxicillin' (AMX), 'cipro' (CIP, ciprofloxacin),
-#> 'tobra' (TOB, tobramycin), and 'genta' (GEN, gentamicin) based on column
-#> 'bacteria', CLSI 2024...
-#> OK
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> ℹ Assuming breakpoint_type = "animal", since host is set.
+#>Interpreting MIC values: 'amoxicillin' (AMX), 'cipro' (CIP, ciprofloxacin),
+#>'tobra' (TOB, tobramycin), and 'genta' (GEN, gentamicin) based on column
+#>'bacteria', CLSI 2024...
+#> OK #>
-#> ℹ Please note that in the absence of specific veterinary breakpoints for
-#> certain animal hosts, the CLSI guideline VET09 will be applied where
-#> possible.
-#> Interpreting MIC values: 'antibiotic' (TESTAB, test Antibiotic), CLSI
-#> 2024...
-#> WARNING
-#> • No CLSI 2024 MIC breakpoints available for test Antibiotic (TESTAB).
-#> Interpreting disk diffusion zones: 'antibiotic' (TESTAB, test Antibiotic),
-#> CLSI 2024...
-#> WARNING
-#> • No CLSI 2024 DISK breakpoints available for test Antibiotic (TESTAB).
-#> Interpreting disk diffusion zones: 'antibiotic' (TESTAB, test Antibiotic),
-#> CLSI 2024...
-#> WARNING
-#> • No CLSI 2024 DISK breakpoints available for test Antibiotic (TESTAB).
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting MIC values: 'amoxicillin' (AMX), 'cipro' (CIP, ciprofloxacin),
+#>'tobra' (TOB, tobramycin), and 'genta' (GEN, gentamicin) based on column
+#>'bacteria', CLSI 2024...
+#> OK
+#>
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), CLSI 2024...
+#> OK
+#>Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin), CLSI 2024...
+#> OK
+#>Interpreting disk diffusion zones: 'genta' (GEN, gentamicin), CLSI 2024...
+#> OK
+#>
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), CLSI 2024...
+#> OK
+#>Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin), CLSI 2024...
+#> OK
+#>Interpreting disk diffusion zones: 'genta' (GEN, gentamicin), CLSI 2024...
+#> OK
+#>
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>ℹ Assuming breakpoint_type = "animal", since host is set.
+#>
+#>ℹ Please note that in the absence of specific veterinary breakpoints for
+#> certain animal hosts, the CLSI guideline VET09 will be applied where
+#> possible.
+#>
+#>Interpreting MIC values: 'amoxicillin' (AMX), 'cipro' (CIP, ciprofloxacin),
+#>'tobra' (TOB, tobramycin), and 'genta' (GEN, gentamicin) based on column
+#>'bacteria', CLSI 2024...
+#> OK
+#>
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>ℹ Assuming breakpoint_type = "animal", since host is set.
+#>
+#>ℹ Please note that in the absence of specific veterinary breakpoints for
+#> certain animal hosts, the CLSI guideline VET09 will be applied where
+#> possible.
+#>
+#>Interpreting MIC values: 'amoxicillin' (AMX), 'cipro' (CIP, ciprofloxacin),
+#>'tobra' (TOB, tobramycin), and 'genta' (GEN, gentamicin) based on column
+#>'bacteria', CLSI 2024...
+#> OK
+#>
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>ℹ Assuming breakpoint_type = "animal", since host is set.
+#>
+#>
+#>ℹ Please note that in the absence of specific veterinary breakpoints for
+#> certain animal hosts, the CLSI guideline VET09 will be applied where
+#> possible.
+#>
+#>Interpreting MIC values: 'antibiotic' (TESTAB, test Antibiotic), CLSI
+#>2024...
+#> WARNING
+#> • No CLSI 2024 MIC breakpoints available for test Antibiotic (TESTAB).
+#>Interpreting disk diffusion zones: 'antibiotic' (TESTAB, test Antibiotic),
+#>CLSI 2024...
+#> WARNING
+#> • No CLSI 2024 DISK breakpoints available for test Antibiotic (TESTAB).
+#>Interpreting disk diffusion zones: 'antibiotic' (TESTAB, test Antibiotic),
+#>CLSI 2024...
+#> WARNING
+#> • No CLSI 2024 DISK breakpoints available for test Antibiotic (TESTAB).#>Warning: There was 1 warning in `mutate()`.#>ℹ In argument: `cipro = (function (x, ...) ...`.#> Caused by warning:#>! The following animal host(s) could not be coerced: "animal_species"#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> ℹ Assuming breakpoint_type = "animal", since host is set.
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.#>
-#> ℹ Please note that in the absence of specific veterinary breakpoints for
-#> certain animal hosts, the CLSI guideline VET09 will be applied where
-#> possible.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), CLSI 2024...
-#> OK
-#> Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin), CLSI 2024...
-#> OK
-#> Interpreting disk diffusion zones: 'genta' (GEN, gentamicin), CLSI 2024...
-#> OK
+#>ℹ Assuming breakpoint_type = "animal", since host is set.
+#>
+#>
+#>ℹ Please note that in the absence of specific veterinary breakpoints for
+#> certain animal hosts, the CLSI guideline VET09 will be applied where
+#> possible.
+#>
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), CLSI 2024...
+#> OK
+#>Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin), CLSI 2024...
+#> OK
+#>Interpreting disk diffusion zones: 'genta' (GEN, gentamicin), CLSI 2024...
+#> OK #>Warning: There was 1 warning in `mutate()`.#>ℹ In argument: `across(...)`.#> Caused by warning:#>! The following animal host(s) could not be coerced: "animal_species"#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting disk diffusion zones: column 'nitrofuratoin' (NIT,
-#> nitrofurantoin), EUCAST 2024...
-#> OK
-#> ℹ Assuming value "urine" in column 'specimen' reflects a urinary tract
-#> infection.
-#> Use as.sir(uti = FALSE) to prevent this.
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting disk diffusion zones: column 'nitrofuratoin' (NIT,
-#> nitrofurantoin), EUCAST 2024...
-#> OK
+#>Interpreting disk diffusion zones: column 'nitrofuratoin' (NIT,
+#>nitrofurantoin), EUCAST 2024...
+#> OK
+#>ℹ Assuming value "urine" in column 'specimen' reflects a urinary tract
+#> infection.
+#> Use as.sir(uti = FALSE) to prevent this.#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), EUCAST 2024...
-#> OK
-#> Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin), EUCAST
-#> 2024...
-#> OK
-#> Interpreting disk diffusion zones: 'genta' (GEN, gentamicin), EUCAST
-#> 2024...
-#> OK
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting disk diffusion zones: column 'nitrofuratoin' (NIT,
+#>nitrofurantoin), EUCAST 2024...
+#> OK
+#>
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting MIC values: 'cipro' (CIP, ciprofloxacin), EUCAST 2024...
+#> OK
+#>Interpreting disk diffusion zones: 'tobra' (TOB, tobramycin), EUCAST
+#>2024...
+#> OK
+#>Interpreting disk diffusion zones: 'genta' (GEN, gentamicin), EUCAST
+#>2024...
+#> OK #> microorganism amoxicillin cipro tobra genta ERY#> 1 Escherichia coli 8 <NA> S S R
@@ -730,25 +754,26 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
as.sir(df_wide)#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: column 'amoxicillin' (AMX), EUCAST 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Interpreting MIC values: column 'cipro' (CIP, ciprofloxacin), EUCAST
-#> 2024...
-#> NOTE
-#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
-#> Interpreting disk diffusion zones: column 'tobra' (TOB, tobramycin), EUCAST
-#> 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for tobramycin (TOB) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Interpreting disk diffusion zones: column 'genta' (GEN, gentamicin), EUCAST
-#> 2024...
-#> NOTE
-#> • Breakpoints for UTI and non-UTI available for gentamicin (GEN) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
-#> Assigning class 'sir' to already clean column 'ERY' (erythromycin)...
-#> OK
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting MIC values: column 'amoxicillin' (AMX), EUCAST 2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for amoxicillin (AMX) in Escherichia coli - assuming body site 'Intravenous'. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting MIC values: column 'cipro' (CIP, ciprofloxacin), EUCAST
+#>2024...
+#> NOTE
+#> • Multiple breakpoints available for ciprofloxacin (CIP) in Escherichia coli - assuming body site 'Non-meningitis'.
+#>Interpreting disk diffusion zones: column 'tobra' (TOB, tobramycin), EUCAST
+#>2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for tobramycin (TOB) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Interpreting disk diffusion zones: column 'genta' (GEN, gentamicin), EUCAST
+#>2024...
+#> NOTE
+#> • Breakpoints for UTI and non-UTI available for gentamicin (GEN) in Escherichia coli - assuming an unspecified body site. Use argument uti to set which isolates are from urine. See ?as.sir.
+#>Assigning class 'sir' to already clean column 'ERY' (erythromycin)...
+#> OK #> microorganism amoxicillin cipro tobra genta ERY#> 1 Escherichia coli S I S S R
@@ -757,16 +782,16 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
#># A tibble: 57 × 16#> datetime index ab_given mo_given host_given ab mo #>*<dttm><int><chr><chr><chr><ab><mo>
-#> 1 2025-01-28 14:23:05 4 AMX B_STRPT… human AMX B_STRPT_PNMN
-#> 2 2025-01-28 14:23:12 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
-#> 3 2025-01-28 14:23:12 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
-#> 4 2025-01-28 14:23:13 4 genta Escheri… cattle GEN B_ESCHR_COLI
-#> 5 2025-01-28 14:23:13 4 genta Escheri… cattle GEN B_ESCHR_COLI
-#> 6 2025-01-28 14:23:05 3 AMX B_STRPT… human AMX B_STRPT_PNMN
-#> 7 2025-01-28 14:23:12 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
-#> 8 2025-01-28 14:23:12 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
-#> 9 2025-01-28 14:23:13 3 tobra Escheri… horses TOB B_ESCHR_COLI
-#>10 2025-01-28 14:23:13 3 tobra Escheri… horses TOB B_ESCHR_COLI
+#> 1 2025-01-31 15:06:42 4 AMX B_STRPT… human AMX B_STRPT_PNMN
+#> 2 2025-01-31 15:06:48 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
+#> 3 2025-01-31 15:06:49 4 genta Escheri… human GEN B_[ORD]_ENTRBCTR
+#> 4 2025-01-31 15:06:49 4 genta Escheri… cattle GEN B_ESCHR_COLI
+#> 5 2025-01-31 15:06:50 4 genta Escheri… cattle GEN B_ESCHR_COLI
+#> 6 2025-01-31 15:06:42 3 AMX B_STRPT… human AMX B_STRPT_PNMN
+#> 7 2025-01-31 15:06:48 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
+#> 8 2025-01-31 15:06:49 3 tobra Escheri… human TOB B_[ORD]_ENTRBCTR
+#> 9 2025-01-31 15:06:49 3 tobra Escheri… horses TOB B_ESCHR_COLI
+#>10 2025-01-31 15:06:50 3 tobra Escheri… horses TOB B_ESCHR_COLI #># ℹ 47 more rows#># ℹ 9 more variables: host <chr>, method <chr>, input <dbl>, outcome <sir>,#># notes <chr>, guideline <chr>, ref_table <chr>, uti <lgl>,
@@ -780,11 +805,12 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
guideline ="EUCAST")#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting MIC values: 'AMP' (ampicillin), EUCAST 2024...
-#> NOTE
-#> • Multiple breakpoints available for ampicillin (AMP) in Streptococcus pneumoniae - assuming body site 'Non-meningitis'.
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting MIC values: 'AMP' (ampicillin), EUCAST 2024...
+#> NOTE
+#> • Multiple breakpoints available for ampicillin (AMP) in Streptococcus pneumoniae - assuming body site 'Non-meningitis'.#> Class 'sir'#> [1] R
@@ -795,10 +821,11 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
guideline ="EUCAST")#>
-#> ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
-#> all the details of the breakpoint interpretations.
-#> Interpreting disk diffusion zones: 'ampicillin' (AMP), EUCAST 2024...
-#> OK
+#>ℹ Run sir_interpretation_history() afterwards to retrieve a logbook with
+#> all the details of the breakpoint interpretations.
+#>
+#>Interpreting disk diffusion zones: 'ampicillin' (AMP), EUCAST 2024...
+#> OK #> Class 'sir'#> [1] R
@@ -806,7 +833,7 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
# For CLEANING existing SIR values ------------------------------------as.sir(c("S", "SDD", "I", "R", "NI", "A", "B", "C"))
-#>Warning: in as.sir(): 3 results in column '20' truncated (38%) that were invalid
+#>Warning: in as.sir(): 3 results in column '20' truncated (38%) that were invalid#> antimicrobial interpretations: "A", "B", and "C"as.sir("<= 0.002; S")# will return "S"sir_data<-as.sir(c(rep("S", 474), rep("I", 36), rep("R", 370)))
@@ -843,16 +870,16 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
#># A tibble: 2,000 × 46#> date patient age gender ward mo PEN OXA FLC AMX #><date><chr><dbl><chr><chr><mo><sir><sir><sir><sir>
-#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
-#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
-#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
-#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
-#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#>10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA
+#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
+#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
+#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
+#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
+#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#>10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA#># ℹ 1,990 more rows#># ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,#># CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
diff --git a/reference/atc_online.html b/reference/atc_online.html
index 4641b42d7..512ec9534 100644
--- a/reference/atc_online.html
+++ b/reference/atc_online.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/av_from_text.html b/reference/av_from_text.html
index cbcbeb133..bde240a9c 100644
--- a/reference/av_from_text.html
+++ b/reference/av_from_text.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/av_property.html b/reference/av_property.html
index 745109733..95d0facab 100644
--- a/reference/av_property.html
+++ b/reference/av_property.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/availability.html b/reference/availability.html
index af977a234..3d36b7a91 100644
--- a/reference/availability.html
+++ b/reference/availability.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
diff --git a/reference/bug_drug_combinations.html b/reference/bug_drug_combinations.html
index ccab08fee..f91dcf102 100644
--- a/reference/bug_drug_combinations.html
+++ b/reference/bug_drug_combinations.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -141,16 +141,16 @@
#># A tibble: 2,000 × 46#> date patient age gender ward mo PEN OXA FLC AMX #><date><chr><dbl><chr><chr><mo><sir><sir><sir><sir>
-#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
-#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
-#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
-#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
-#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
-#>10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA
+#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
+#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
+#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
+#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
+#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
+#>10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA#># ℹ 1,990 more rows#># ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,#># CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
@@ -171,7 +171,7 @@
#>4 (unknown species) AMX 15 0 0 1 0 16#>5 (unknown species) AZM 3 0 0 3 0 6#>6 (unknown species) CAZ 0 0 0 0 0 0
-#> Use 'format()' on this result to get a publishable/printable format.
+#>Use 'format()' on this result to get a publishable/printable format.format(x, translate_ab ="name (atc)")#># A tibble: 39 × 12#> Group Drug CoNS `E. coli` `E. faecalis` `K. pneumoniae` `P. aeruginosa`
@@ -208,7 +208,7 @@
#> 9 Gram-negative CLI 18 0 1 709 0 728#>10 Gram-negative COL 309 0 0 78 0 387#># ℹ 70 more rows
-#> Use 'format()' on this result to get a publishable/printable format.
+#>Use 'format()' on this result to get a publishable/printable format.bug_drug_combinations(example_isolates, FUN =function(x){
@@ -232,7 +232,7 @@
#> 9 E. coli CLI 0 0 0 467 0 467#>10 E. coli COL 240 0 0 0 0 240#># ℹ 70 more rows
-#> Use 'format()' on this result to get a publishable/printable format.
+#>Use 'format()' on this result to get a publishable/printable format.# }
diff --git a/reference/clinical_breakpoints.html b/reference/clinical_breakpoints.html
index 6292e1104..772e9b6f7 100644
--- a/reference/clinical_breakpoints.html
+++ b/reference/clinical_breakpoints.html
@@ -21,7 +21,7 @@ Use as.sir() to transform MICs or disks measurements to SIR values.">AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -137,16 +137,16 @@ Use as.sir() to transform MICs or disks measurements to SIR values.">#># A tibble: 34,063 × 14#> guideline type host method site mo rank_index ab ref_tbl #><chr><chr><chr><chr><chr><mo><dbl><ab><chr>
-#> 1 EUCAST 2024 human human DISK NA B_ACHRMB_XYLS 2 MEM A. xylo…
-#> 2 EUCAST 2024 human human MIC NA B_ACHRMB_XYLS 2 MEM A. xylo…
-#> 3 EUCAST 2024 human human DISK NA B_ACHRMB_XYLS 2 SXT A. xylo…
-#> 4 EUCAST 2024 human human MIC NA B_ACHRMB_XYLS 2 SXT A. xylo…
-#> 5 EUCAST 2024 human human DISK NA B_ACHRMB_XYLS 2 TZP A. xylo…
-#> 6 EUCAST 2024 human human MIC NA B_ACHRMB_XYLS 2 TZP A. xylo…
-#> 7 EUCAST 2024 human human DISK NA B_ACNTB 3 AMK Acineto…
-#> 8 EUCAST 2024 human human DISK Uncomp… B_ACNTB 3 AMK Acineto…
-#> 9 EUCAST 2024 human human MIC NA B_ACNTB 3 AMK Acineto…
-#>10 EUCAST 2024 human human MIC Uncomp… B_ACNTB 3 AMK Acineto…
+#> 1 EUCAST 2024 human human DISK NAB_ACHRMB_XYLS 2 MEM A. xylo…
+#> 2 EUCAST 2024 human human MIC NAB_ACHRMB_XYLS 2 MEM A. xylo…
+#> 3 EUCAST 2024 human human DISK NAB_ACHRMB_XYLS 2 SXT A. xylo…
+#> 4 EUCAST 2024 human human MIC NAB_ACHRMB_XYLS 2 SXT A. xylo…
+#> 5 EUCAST 2024 human human DISK NAB_ACHRMB_XYLS 2 TZP A. xylo…
+#> 6 EUCAST 2024 human human MIC NAB_ACHRMB_XYLS 2 TZP A. xylo…
+#> 7 EUCAST 2024 human human DISK NAB_ACNTB 3 AMK Acineto…
+#> 8 EUCAST 2024 human human DISK Uncomp… B_ACNTB 3 AMK Acineto…
+#> 9 EUCAST 2024 human human MIC NAB_ACNTB 3 AMK Acineto…
+#>10 EUCAST 2024 human human MIC Uncomp… B_ACNTB 3 AMK Acineto…#># ℹ 34,053 more rows#># ℹ 5 more variables: disk_dose <chr>, breakpoint_S <dbl>, breakpoint_R <dbl>,#># uti <lgl>, is_SDD <lgl>
diff --git a/reference/count.html b/reference/count.html
index ca16c4339..62522c93f 100644
--- a/reference/count.html
+++ b/reference/count.html
@@ -9,7 +9,7 @@ count_resistant() should be used to count resistant isolates, count_susceptible(
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -180,22 +180,22 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
# be more specificcount_S(example_isolates$AMX)
-#> Using count_S() is discouraged; use count_susceptible() instead to also
-#> consider "I" and "SDD" being susceptible. This note will be shown once for
-#> this session.
+#>Using count_S() is discouraged; use count_susceptible() instead to also
+#>consider "I" and "SDD" being susceptible. This note will be shown once for
+#>this session.#> [1] 543count_SI(example_isolates$AMX)
-#> Note that count_SI() will also count dose-dependent susceptibility,
-#> 'SDD'. This note will be shown once for this session.
+#>Note that count_SI() will also count dose-dependent susceptibility,
+#>'SDD'. This note will be shown once for this session.#> [1] 546count_I(example_isolates$AMX)
-#> Note that count_I() will also count dose-dependent susceptibility, 'SDD'.
-#> This note will be shown once for this session.
+#>Note that count_I() will also count dose-dependent susceptibility, 'SDD'.
+#>This note will be shown once for this session.#> [1] 3count_IR(example_isolates$AMX)
-#> Using count_IR() is discouraged; use count_resistant() instead to not
-#> consider "I" and "SDD" being resistant. This note will be shown once for
-#> this session.
+#>Using count_IR() is discouraged; use count_resistant() instead to not
+#>consider "I" and "SDD" being resistant. This note will be shown once for
+#>this session.#> [1] 807count_R(example_isolates$AMX)#> [1] 804
@@ -258,8 +258,8 @@ A microorganism is categorised as "Resistant" when there is a high likelihood of
group_by(ward)%>%count_df(translate =FALSE)}
-#> ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
-#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
+#>ℹ For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB'
+#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)#># A tibble: 12 × 4#> ward antibiotic interpretation value#>*<chr><chr><ord><int>
diff --git a/reference/custom_eucast_rules.html b/reference/custom_eucast_rules.html
index e1b0e5626..a2d8b6aee 100644
--- a/reference/custom_eucast_rules.html
+++ b/reference/custom_eucast_rules.html
@@ -7,7 +7,7 @@
AMR (for R)
- 2.1.1.9135
+ 2.1.1.9136
@@ -180,11 +180,11 @@
x#> A set of custom EUCAST rules:#>
-#> 1. If AMC is "R" and genus is "Klebsiella" then set to R :
-#> amoxicillin (AMX), ampicillin (AMP)
+#> 1. If AMC is R and genus is "Klebsiella" then set to R :
+#>amoxicillin (AMX), ampicillin (AMP)#>
-#> 2. If AMC is "I" and genus is "Klebsiella" then set to I :
-#> amoxicillin (AMX), ampicillin (AMP)
+#> 2. If AMC is I and genus is "Klebsiella" then set to I :
+#>amoxicillin (AMX), ampicillin (AMP)# run the custom rule set (verbose = TRUE will return a logbook instead of the data set):eucast_rules(example_isolates,
@@ -213,17 +213,17 @@
x2#> A set of custom EUCAST rules:#>
-#> 1. If AMC is "R" and genus is "Klebsiella" then set to R :
-#> amoxicillin (AMX), ampicillin (AMP)
+#> 1. If AMC is R and genus is "Klebsiella" then set to R :
+#>amoxicillin (AMX), ampicillin (AMP)#>
-#> 2. If AMC is "I" and genus is "Klebsiella" then set to I :
-#> amoxicillin (AMX), ampicillin (AMP)
+#> 2. If AMC is I and genus is "Klebsiella" then set to I :
+#>amoxicillin (AMX), ampicillin (AMP)#>
-#> 3. If TZP is "R" then set to R :
-#> biapenem (BIA), doripenem (DOR), ertapenem (ETP), imipenem (IPM),
-#> imipenem/EDTA (IPE), imipenem/relebactam (IMR), meropenem (MEM),
-#> meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), panipenem (PAN),
-#> razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), tebipenem (TBP)
+#> 3. If TZP is R then set to R :
+#>biapenem (BIA), doripenem (DOR), ertapenem (ETP), imipenem (IPM),
+#>imipenem/EDTA (IPE), imipenem/relebactam (IMR), meropenem (MEM),
+#>meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), panipenem (PAN),
+#>razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA), tebipenem (TBP)