1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-08 09:51:48 +02:00

(v1.5.0.9026) vignette update, support for GISA

This commit is contained in:
2021-02-25 12:31:12 +01:00
parent a673407904
commit 1737d56ae4
36 changed files with 604 additions and 480 deletions

115
R/plot.R
View File

@ -28,7 +28,7 @@
#' Functions to plot classes `rsi`, `mic` and `disk`, with support for base R and `ggplot2`.
#' @inheritSection lifecycle Stable Lifecycle
#' @inheritSection AMR Read more on Our Website!
#' @param x MIC values created with [as.mic()] or disk diffusion values created with [as.disk()]
#' @param x,data MIC values created with [as.mic()] or disk diffusion values created with [as.disk()]
#' @param mapping aesthetic mappings to use for [`ggplot()`][ggplot2::ggplot()]
#' @param main,title title of the plot
#' @param xlab,ylab axis title
@ -37,7 +37,10 @@
#' @param guideline interpretation guideline to use, defaults to the latest included EUCAST guideline, see *Details*
#' @param colours_RSI colours to use for filling in the bars, must be a vector of three values (in the order R, S and I). The default colours are colour-blind friendly.
#' @param expand logical to indicate whether the range on the x axis should be expanded between the lowest and highest value. For MIC values, intermediate values will be factors of 2 starting from the highest MIC value. For disk diameters, the whole diameter range will be filled.
#' @details For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the `guideline` argument are: `r vector_and(AMR::rsi_translation$guideline, quotes = TRUE, reverse = TRUE)`.
#' @details
#' The interpretation of "I" will be named "Increased exposure" for all EUCAST guidelines since 2019, and will be named "Intermediate" in all other cases.
#'
#' For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used as input for the `guideline` argument are: `r vector_and(AMR::rsi_translation$guideline, quotes = TRUE, reverse = TRUE)`.
#'
#' Simply using `"CLSI"` or `"EUCAST"` as input will automatically select the latest version of that guideline.
#' @name plot
@ -62,7 +65,7 @@
NULL
#' @method plot mic
#' @importFrom graphics barplot axis mtext
#' @importFrom graphics barplot axis mtext legend
#' @export
#' @rdname plot
plot.mic <- function(x,
@ -89,13 +92,13 @@ plot.mic <- function(x,
x <- plot_prepare_table(x, expand = expand)
cols_sub <- plot_colours_and_sub(x = x,
mo = mo,
ab = ab,
guideline = guideline,
colours_RSI = colours_RSI,
fn = as.mic,
...)
cols_sub <- plot_colours_subtitle_guideline(x = x,
mo = mo,
ab = ab,
guideline = guideline,
colours_RSI = colours_RSI,
fn = as.mic,
...)
barplot(x,
col = cols_sub$cols,
@ -117,7 +120,7 @@ plot.mic <- function(x,
legend_col <- colours_RSI[2]
}
if (colours_RSI[3] %in% cols_sub$cols) {
legend_txt <- c(legend_txt, "Incr. exposure")
legend_txt <- c(legend_txt, plot_name_of_I(cols_sub$guideline))
legend_col <- c(legend_col, colours_RSI[3])
}
if (colours_RSI[1] %in% cols_sub$cols) {
@ -194,21 +197,21 @@ ggplot.mic <- function(data,
title <- gsub(" +", " ", paste0(title, collapse = " "))
x <- plot_prepare_table(data, expand = expand)
cols_sub <- plot_colours_and_sub(x = x,
mo = mo,
ab = ab,
guideline = guideline,
colours_RSI = colours_RSI,
fn = as.mic,
...)
cols_sub <- plot_colours_subtitle_guideline(x = x,
mo = mo,
ab = ab,
guideline = guideline,
colours_RSI = colours_RSI,
fn = as.mic,
...)
df <- as.data.frame(x, stringsAsFactors = TRUE)
colnames(df) <- c("mic", "count")
df$cols <- cols_sub$cols
df$cols[df$cols == colours_RSI[1]] <- "Resistant"
df$cols[df$cols == colours_RSI[2]] <- "Susceptible"
df$cols[df$cols == colours_RSI[3]] <- "Incr. exposure"
df$cols[df$cols == colours_RSI[3]] <- plot_name_of_I(cols_sub$guideline)
df$cols <- factor(df$cols,
levels = c("Susceptible", "Incr. exposure", "Resistant"),
levels = c("Susceptible", plot_name_of_I(cols_sub$guideline), "Resistant"),
ordered = TRUE)
if (!is.null(mapping)) {
p <- ggplot2::ggplot(df, mapping = mapping)
@ -218,10 +221,11 @@ ggplot.mic <- function(data,
if (any(colours_RSI %in% cols_sub$cols)) {
p <- p +
ggplot2::geom_col(aes(x = mic, y = count, fill = cols)) +
ggplot2::geom_col(ggplot2::aes(x = mic, y = count, fill = cols)) +
ggplot2::scale_fill_manual(values = c("Resistant" = colours_RSI[1],
"Susceptible" = colours_RSI[2],
"Incr. exposure" = colours_RSI[3]),,
"Incr. exposure" = colours_RSI[3],
"Intermediate" = colours_RSI[3]),
name = NULL)
} else {
p <- p +
@ -235,7 +239,7 @@ ggplot.mic <- function(data,
#' @method plot disk
#' @export
#' @importFrom graphics barplot axis mtext
#' @importFrom graphics barplot axis mtext legend
#' @rdname plot
plot.disk <- function(x,
main = paste("Disk zones values of", deparse(substitute(x))),
@ -261,13 +265,13 @@ plot.disk <- function(x,
x <- plot_prepare_table(x, expand = expand)
cols_sub <- plot_colours_and_sub(x = x,
mo = mo,
ab = ab,
guideline = guideline,
colours_RSI = colours_RSI,
fn = as.disk,
...)
cols_sub <- plot_colours_subtitle_guideline(x = x,
mo = mo,
ab = ab,
guideline = guideline,
colours_RSI = colours_RSI,
fn = as.disk,
...)
barplot(x,
col = cols_sub$cols,
@ -289,7 +293,7 @@ plot.disk <- function(x,
legend_col <- colours_RSI[1]
}
if (colours_RSI[3] %in% cols_sub$cols) {
legend_txt <- c(legend_txt, "Incr. exposure")
legend_txt <- c(legend_txt, plot_name_of_I(cols_sub$guideline))
legend_col <- c(legend_col, colours_RSI[3])
}
if (colours_RSI[2] %in% cols_sub$cols) {
@ -367,21 +371,21 @@ ggplot.disk <- function(data,
title <- gsub(" +", " ", paste0(title, collapse = " "))
x <- plot_prepare_table(data, expand = expand)
cols_sub <- plot_colours_and_sub(x = x,
mo = mo,
ab = ab,
guideline = guideline,
colours_RSI = colours_RSI,
fn = as.disk,
...)
cols_sub <- plot_colours_subtitle_guideline(x = x,
mo = mo,
ab = ab,
guideline = guideline,
colours_RSI = colours_RSI,
fn = as.disk,
...)
df <- as.data.frame(x, stringsAsFactors = TRUE)
colnames(df) <- c("disk", "count")
df$cols <- cols_sub$cols
df$cols[df$cols == colours_RSI[1]] <- "Resistant"
df$cols[df$cols == colours_RSI[2]] <- "Susceptible"
df$cols[df$cols == colours_RSI[3]] <- "Incr. exposure"
df$cols[df$cols == colours_RSI[3]] <- plot_name_of_I(cols_sub$guideline)
df$cols <- factor(df$cols,
levels = c("Resistant", "Incr. exposure", "Susceptible"),
levels = c("Resistant", plot_name_of_I(cols_sub$guideline), "Susceptible"),
ordered = TRUE)
if (!is.null(mapping)) {
p <- ggplot2::ggplot(df, mapping = mapping)
@ -394,7 +398,8 @@ ggplot.disk <- function(data,
ggplot2::geom_col(aes(x = disk, y = count, fill = cols)) +
ggplot2::scale_fill_manual(values = c("Resistant" = colours_RSI[1],
"Susceptible" = colours_RSI[2],
"Incr. exposure" = colours_RSI[3]),
"Incr. exposure" = colours_RSI[3],
"Intermediate" = colours_RSI[3]),
name = NULL)
} else {
p <- p +
@ -402,7 +407,7 @@ ggplot.disk <- function(data,
}
p +
ggplot2::labs(title = title, x = xlab, y = ylab, sub = cols_sub$sub)
ggplot2::labs(title = title, x = xlab, y = ylab, subtitle = cols_sub$sub)
}
plot_prepare_table <- function(x, expand) {
@ -413,7 +418,9 @@ plot_prepare_table <- function(x, expand) {
while (min(extra_range) / 2 > min(as.double(x))) {
extra_range <- c(min(extra_range) / 2, extra_range)
}
extra_range <- setNames(rep(0, length(extra_range)), extra_range)
nms <- extra_range
extra_range <- rep(0, length(extra_range))
names(extra_range) <- nms
x <- table(droplevels(x, as.mic = FALSE))
extra_range <- extra_range[!names(extra_range) %in% names(x)]
x <- as.table(c(x, extra_range))
@ -437,12 +444,22 @@ plot_prepare_table <- function(x, expand) {
as.table(x)
}
plot_colours_and_sub <- function(x, mo, ab, guideline, colours_RSI, fn, ...) {
plot_name_of_I <- function(guideline) {
if (!guideline %like% "CLSI" && as.double(gsub("[^0-9]+", "", guideline)) >= 2019) {
# interpretation since 2019
"Incr. exposure"
} else {
# interpretation until 2019
"Intermediate"
}
}
plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_RSI, fn, ...) {
guideline <- get_guideline(guideline, AMR::rsi_translation)
if (!is.null(mo) && !is.null(ab)) {
# interpret and give colour based on MIC values
mo <- as.mo(mo)
ab <- as.ab(ab)
guideline <- get_guideline(guideline, AMR::rsi_translation)
rsi <- suppressWarnings(suppressMessages(as.rsi(fn(names(x)), mo = mo, ab = ab, guideline = guideline, ...)))
cols <- character(length = length(rsi))
cols[is.na(rsi)] <- "#BEBEBE"
@ -454,16 +471,16 @@ plot_colours_and_sub <- function(x, mo, ab, guideline, colours_RSI, fn, ...) {
if (all(cols == "#BEBEBE")) {
message_("No ", guideline, " interpretations found for ",
ab_name(ab, language = NULL, tolower = TRUE), " in ", moname)
guideline <- ""
guideline_txt <- ""
} else {
guideline <- paste0("(following ", guideline, ")")
guideline_txt <- paste0("(following ", guideline, ")")
}
sub <- bquote(.(abname)~"in"~italic(.(moname))~.(guideline))
sub <- bquote(.(abname)~"in"~italic(.(moname))~.(guideline_txt))
} else {
cols <- "#BEBEBE"
sub <- NULL
}
list(cols = cols, sub = sub)
list(cols = cols, sub = sub, guideline = guideline)
}