1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-25 08:06:12 +01:00

(v2.1.1.9116) selectors as separate functions

This commit is contained in:
dr. M.S. (Matthijs) Berends 2024-12-13 09:44:54 +01:00
parent e231352617
commit 175a6777f3
No known key found for this signature in database
16 changed files with 113 additions and 67 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 2.1.1.9112 Version: 2.1.1.9116
Date: 2024-12-06 Date: 2024-12-13
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 2.1.1.9112 # AMR 2.1.1.9116
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)* *(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)*
@ -47,7 +47,8 @@ This package now supports not only tools for AMR data analysis in clinical setti
* Added Amorolfine (`AMO`, D01AE16), which is now also part of the `antifungals()` selector * Added Amorolfine (`AMO`, D01AE16), which is now also part of the `antifungals()` selector
* Antibiotic selectors * Antibiotic selectors
* Added selectors `nitrofurans()` and `rifamycins()` * Added selectors `nitrofurans()` and `rifamycins()`
* When using antibiotic selectors such as `aminoglycosides()` that exclude non-treatable drugs like gentamicin-high, the function now always returns a warning that these can be included using `only_treatable = FALSE` * When using antibiotic selectors (such as `aminoglycosides()`) that exclude non-treatable drugs (such as gentamicin-high), the function now always returns a warning that these can be included using `only_treatable = FALSE`
* All selectors can now be run as a separate command to retrieve a vector of all possible antimicrobials that the selector can select
* MICs * MICs
* Added as valid levels: 4096, 6 powers of 0.0625, and 5 powers of 192 (192, 384, 576, 768, 960) * Added as valid levels: 4096, 6 powers of 0.0625, and 5 powers of 192 (192, 384, 576, 768, 960)
* Added new argument `keep_operators` to `as.mic()`. This can be `"all"` (default), `"none"`, or `"edges"`. This argument is also available in the new `rescale_mic()` and `scale_*_mic()` functions. * Added new argument `keep_operators` to `as.mic()`. This can be `"all"` (default), `"none"`, or `"edges"`. This argument is also available in the new `rescale_mic()` and `scale_*_mic()` functions.
@ -71,6 +72,7 @@ This package now supports not only tools for AMR data analysis in clinical setti
* Fixed a bug for `sir_confidence_interval()` when there are no isolates available * Fixed a bug for `sir_confidence_interval()` when there are no isolates available
* Updated the prevalence calculation to include genera from the World Health Organization's (WHO) Priority Pathogen List * Updated the prevalence calculation to include genera from the World Health Organization's (WHO) Priority Pathogen List
* Improved algorithm of `first_isolate()` when using the phenotype-based method, to prioritise records with the highest availability of SIR values * Improved algorithm of `first_isolate()` when using the phenotype-based method, to prioritise records with the highest availability of SIR values
* `scale_y_percent()` can now cope with ranges outside the 0-100% range
## Other ## Other
* Greatly improved `vctrs` integration, a Tidyverse package working in the background for many Tidyverse functions. For users, this means that functions such as `dplyr`'s `bind_rows()`, `rowwise()` and `c_across()` are now supported for e.g. columns of class `mic`. Despite this, this `AMR` package is still zero-dependent on any other package, including `dplyr` and `vctrs`. * Greatly improved `vctrs` integration, a Tidyverse package working in the background for many Tidyverse functions. For users, this means that functions such as `dplyr`'s `bind_rows()`, `rowwise()` and `c_across()` are now supported for e.g. columns of class `mic`. Despite this, this `AMR` package is still zero-dependent on any other package, including `dplyr` and `vctrs`.

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1 Metadata-Version: 2.1
Name: AMR Name: AMR
Version: 2.1.1.9112 Version: 2.1.1.9116
Summary: A Python wrapper for the AMR R package Summary: A Python wrapper for the AMR R package
Home-page: https://github.com/msberends/AMR Home-page: https://github.com/msberends/AMR
Author: Dr. Matthijs Berends Author: Dr. Matthijs Berends

Binary file not shown.

Binary file not shown.

View File

@ -2,7 +2,7 @@ from setuptools import setup, find_packages
setup( setup(
name='AMR', name='AMR',
version='2.1.1.9112', version='2.1.1.9116',
packages=find_packages(), packages=find_packages(),
install_requires=[ install_requires=[
'rpy2', 'rpy2',

View File

@ -1036,6 +1036,7 @@ get_current_data <- function(arg_name, call) {
", e.g.:\n", ", e.g.:\n",
" ", AMR_env$bullet_icon, " your_data %>% select(", fn, "())\n", " ", AMR_env$bullet_icon, " your_data %>% select(", fn, "())\n",
" ", AMR_env$bullet_icon, " your_data %>% select(column_a, column_b, ", fn, "())\n", " ", AMR_env$bullet_icon, " your_data %>% select(column_a, column_b, ", fn, "())\n",
" ", AMR_env$bullet_icon, " your_data %>% filter(any(", fn, "() == \"R\"))\n",
" ", AMR_env$bullet_icon, " your_data[, ", fn, "()]\n", " ", AMR_env$bullet_icon, " your_data[, ", fn, "()]\n",
" ", AMR_env$bullet_icon, " your_data[, c(\"column_a\", \"column_b\", ", fn, "())]" " ", AMR_env$bullet_icon, " your_data[, c(\"column_a\", \"column_b\", ", fn, "())]"
) )

View File

@ -48,7 +48,7 @@
#' `r paste0(" * ", na.omit(sapply(DEFINED_AB_GROUPS, function(ab) ifelse(tolower(gsub("^AB_", "", ab)) %in% ls(envir = asNamespace("AMR")), paste0("[", tolower(gsub("^AB_", "", ab)), "()] can select: \\cr ", vector_and(paste0(ab_name(eval(parse(text = ab), envir = asNamespace("AMR")), language = NULL, tolower = TRUE), " (", eval(parse(text = ab), envir = asNamespace("AMR")), ")"), quotes = FALSE, sort = TRUE)), character(0)), USE.NAMES = FALSE)), "\n", collapse = "")` #' `r paste0(" * ", na.omit(sapply(DEFINED_AB_GROUPS, function(ab) ifelse(tolower(gsub("^AB_", "", ab)) %in% ls(envir = asNamespace("AMR")), paste0("[", tolower(gsub("^AB_", "", ab)), "()] can select: \\cr ", vector_and(paste0(ab_name(eval(parse(text = ab), envir = asNamespace("AMR")), language = NULL, tolower = TRUE), " (", eval(parse(text = ab), envir = asNamespace("AMR")), ")"), quotes = FALSE, sort = TRUE)), character(0)), USE.NAMES = FALSE)), "\n", collapse = "")`
#' @rdname antibiotic_class_selectors #' @rdname antibiotic_class_selectors
#' @name antibiotic_class_selectors #' @name antibiotic_class_selectors
#' @return (internally) a [character] vector of column names, with additional class `"ab_selector"` #' @return When used inside selecting or filtering, this returns a [character] vector of column names, with additional class `"ab_selector"`. When used individually, this returns an ['ab' vector][as.ab()] with all possible antimicrobial that the function would be able to select or filter.
#' @export #' @export
#' @inheritSection AMR Reference Data Publicly Available #' @inheritSection AMR Reference Data Publicly Available
#' @examples #' @examples
@ -57,9 +57,15 @@
#' example_isolates #' example_isolates
#' #'
#' #'
#' # you can use the selectors separately to retrieve all possible antimicrobials:
#' carbapenems()
#'
#'
#' # Though they are primarily intended to use for selections and filters.
#' # Examples sections below are split into 'dplyr', 'base R', and 'data.table': #' # Examples sections below are split into 'dplyr', 'base R', and 'data.table':
#' #'
#' \donttest{ #' \donttest{
#' \dontrun{
#' # dplyr ------------------------------------------------------------------- #' # dplyr -------------------------------------------------------------------
#' #'
#' library(dplyr, warn.conflicts = FALSE) #' library(dplyr, warn.conflicts = FALSE)
@ -145,7 +151,7 @@
#' z <- example_isolates %>% filter(if_all(carbapenems(), ~ .x == "R")) #' z <- example_isolates %>% filter(if_all(carbapenems(), ~ .x == "R"))
#' identical(x, y) && identical(y, z) #' identical(x, y) && identical(y, z)
#' #'
#' #' }
#' # base R ------------------------------------------------------------------ #' # base R ------------------------------------------------------------------
#' #'
#' # select columns 'IPM' (imipenem) and 'MEM' (meropenem) #' # select columns 'IPM' (imipenem) and 'MEM' (meropenem)
@ -589,15 +595,16 @@ ab_select_exec <- function(function_name,
ab_class_args = NULL) { ab_class_args = NULL) {
# get_current_data() has to run each time, for cases where e.g., filter() and select() are used in same call # get_current_data() has to run each time, for cases where e.g., filter() and select() are used in same call
# it only takes a couple of milliseconds, so no problem # it only takes a couple of milliseconds, so no problem
vars_df <- get_current_data(arg_name = NA, call = -3) vars_df <- tryCatch(get_current_data(arg_name = NA, call = -3), error = function(e) NULL)
# to improve speed, get_column_abx() will only run once when e.g. in a select or group call # to improve speed, get_column_abx() will only run once when e.g. in a select or group call
ab_in_data <- get_column_abx(vars_df, if (!is.null(vars_df)) {
info = FALSE, only_sir_columns = only_sir_columns, ab_in_data <- get_column_abx(vars_df,
sort = FALSE, fn = function_name info = FALSE, only_sir_columns = only_sir_columns,
) sort = FALSE, fn = function_name)
}
# untreatable drugs # untreatable drugs
if (only_treatable == TRUE) { if (!is.null(vars_df) && only_treatable == TRUE) {
untreatable <- AMR_env$AB_lookup[which(AMR_env$AB_lookup$name %like% "(-high|EDTA|polysorbate|macromethod|screening|nacubactam)"), "ab", drop = TRUE] untreatable <- AMR_env$AB_lookup[which(AMR_env$AB_lookup$name %like% "(-high|EDTA|polysorbate|macromethod|screening|nacubactam)"), "ab", drop = TRUE]
if (any(untreatable %in% names(ab_in_data))) { if (any(untreatable %in% names(ab_in_data))) {
if (message_not_thrown_before(function_name, "ab_class", "untreatable")) { if (message_not_thrown_before(function_name, "ab_class", "untreatable")) {
@ -617,7 +624,7 @@ ab_select_exec <- function(function_name,
} }
} }
if (length(ab_in_data) == 0) { if (!is.null(vars_df) && length(ab_in_data) == 0) {
message_("No antimicrobial drugs found in the data.") message_("No antimicrobial drugs found in the data.")
return(NULL) return(NULL)
} }
@ -666,6 +673,21 @@ ab_select_exec <- function(function_name,
function_name <- "ab_class" function_name <- "ab_class"
examples <- paste0(" (such as ", find_ab_names(ab_class_args, 2), ")") examples <- paste0(" (such as ", find_ab_names(ab_class_args, 2), ")")
} }
if (is.null(vars_df)) {
# no data found, no antimicrobials, so no input. Can happen if users run e.g. `aminoglycosides()` as a separate command.
examples <- paste0(
", e.g.:\n",
" ", AMR_env$bullet_icon, " your_data %>% select(", function_name, "())\n",
" ", AMR_env$bullet_icon, " your_data %>% select(column_a, column_b, ", function_name, "())\n",
" ", AMR_env$bullet_icon, " your_data %>% filter(any(", function_name, "() == \"R\"))\n",
" ", AMR_env$bullet_icon, " your_data[, ", function_name, "()]\n",
" ", AMR_env$bullet_icon, " your_data[, c(\"column_a\", \"column_b\", ", function_name, "())]"
)
message_("The function `" , function_name, "()` should be used inside a `dplyr` verb or `data.frame` call",
examples, "\n\nNow returning a vector of all possible antimicrobials that `" , function_name, "()` can select.")
return(sort(abx))
}
# get the columns with a group names in the chosen ab class # get the columns with a group names in the chosen ab class
agents <- ab_in_data[names(ab_in_data) %in% abx] agents <- ab_in_data[names(ab_in_data) %in% abx]

View File

@ -373,17 +373,17 @@ facet_sir <- function(facet = c("interpretation", "antibiotic"), nrow = NULL) {
#' @rdname ggplot_sir #' @rdname ggplot_sir
#' @export #' @export
scale_y_percent <- function(breaks = seq(0, 1, 0.1), limits = NULL) { scale_y_percent <- function(breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1), limits = NULL) {
stop_ifnot_installed("ggplot2") stop_ifnot_installed("ggplot2")
meet_criteria(breaks, allow_class = c("numeric", "integer")) meet_criteria(breaks, allow_class = c("numeric", "integer", "function"))
meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE) meet_criteria(limits, allow_class = c("numeric", "integer"), has_length = 2, allow_NULL = TRUE, allow_NA = TRUE)
if (all(breaks[breaks != 0] > 1)) { if (!is.function(breaks) && all(breaks[breaks != 0] > 1)) {
breaks <- breaks / 100 breaks <- breaks / 100
} }
ggplot2::scale_y_continuous( ggplot2::scale_y_continuous(
breaks = breaks, breaks = breaks,
labels = percentage(breaks), labels = if (is.function(breaks)) function(x) percentage(breaks(x)) else percentage(breaks),
limits = limits limits = limits
) )
} }

Binary file not shown.

View File

@ -1,5 +1,5 @@
This files contains all context you must know about the AMR package for R. This files contains all context you must know about the AMR package for R.
First and foremost, you are trained on version 2.1.1.9112. Remember this whenever someone asks which AMR package version youre at. First and foremost, you are trained on version 2.1.1.9116. Remember this whenever someone asks which AMR package version youre at.
-------------------------------- --------------------------------
THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE': THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'NAMESPACE':
@ -811,29 +811,29 @@ Authors:
Other contributors: Other contributors:
\itemize{ \itemize{
\item Casper J. Albers (\href{https://orcid.org/0000-0002-9213-6743}{ORCID}) [thesis advisor] \item Andrew P. Norgan (\href{https://orcid.org/0000-0002-2955-2066}{ORCID}) [contributor]
\item Larisse Bolton (\href{https://orcid.org/0000-0001-7879-2173}{ORCID}) [contributor] \item Anita Williams (\href{https://orcid.org/0000-0002-5295-8451}{ORCID}) [contributor]
\item Peter Dutey-Magni (\href{https://orcid.org/0000-0002-8942-9836}{ORCID}) [contributor] \item Annick Lenglet (\href{https://orcid.org/0000-0003-2013-8405}{ORCID}) [contributor]
\item Judith M. Fonville [contributor] \item Anthony Underwood (\href{https://orcid.org/0000-0002-8547-4277}{ORCID}) [contributor]
\item Alex W. Friedrich (\href{https://orcid.org/0000-0003-4881-038X}{ORCID}) [thesis advisor] \item Anton Mymrikov [contributor]
\item Corinna Glasner (\href{https://orcid.org/0000-0003-1241-1328}{ORCID}) [thesis advisor] \item Bart C. Meijer [contributor]
\item Christian F. Luz (\href{https://orcid.org/0000-0001-5809-5995}{ORCID}) [contributor]
\item Dmytro Mykhailenko [contributor]
\item Eric H. L. C. M. Hazenberg [contributor] \item Eric H. L. C. M. Hazenberg [contributor]
\item Gwen Knight (\href{https://orcid.org/0000-0002-7263-9896}{ORCID}) [contributor] \item Gwen Knight (\href{https://orcid.org/0000-0002-7263-9896}{ORCID}) [contributor]
\item Annick Lenglet (\href{https://orcid.org/0000-0003-2013-8405}{ORCID}) [contributor]
\item Christian F. Luz (\href{https://orcid.org/0000-0001-5809-5995}{ORCID}) [contributor]
\item Bart C. Meijer [contributor]
\item Dmytro Mykhailenko [contributor]
\item Anton Mymrikov [contributor]
\item Andrew P. Norgan (\href{https://orcid.org/0000-0002-2955-2066}{ORCID}) [contributor]
\item Sofia Ny (\href{https://orcid.org/0000-0002-2017-1363}{ORCID}) [contributor]
\item Matthew Saab [contributor]
\item Jonas Salm [contributor]
\item Javier Sanchez (\href{https://orcid.org/0000-0003-2605-8094}{ORCID}) [contributor]
\item Rogier P. Schade [contributor]
\item Bhanu N. M. Sinha (\href{https://orcid.org/0000-0003-1634-0010}{ORCID}) [thesis advisor]
\item Jason Stull (\href{https://orcid.org/0000-0002-9028-8153}{ORCID}) [contributor] \item Jason Stull (\href{https://orcid.org/0000-0002-9028-8153}{ORCID}) [contributor]
\item Anthony Underwood (\href{https://orcid.org/0000-0002-8547-4277}{ORCID}) [contributor] \item Javier Sanchez (\href{https://orcid.org/0000-0003-2605-8094}{ORCID}) [contributor]
\item Anita Williams (\href{https://orcid.org/0000-0002-5295-8451}{ORCID}) [contributor] \item Jonas Salm [contributor]
\item Judith M. Fonville [contributor]
\item Larisse Bolton (\href{https://orcid.org/0000-0001-7879-2173}{ORCID}) [contributor]
\item Matthew Saab [contributor]
\item Peter Dutey-Magni (\href{https://orcid.org/0000-0002-8942-9836}{ORCID}) [contributor]
\item Rogier P. Schade [contributor]
\item Sofia Ny (\href{https://orcid.org/0000-0002-2017-1363}{ORCID}) [contributor]
\item Alex W. Friedrich (\href{https://orcid.org/0000-0003-4881-038X}{ORCID}) [thesis advisor]
\item Bhanu N. M. Sinha (\href{https://orcid.org/0000-0003-1634-0010}{ORCID}) [thesis advisor]
\item Casper J. Albers (\href{https://orcid.org/0000-0002-9213-6743}{ORCID}) [thesis advisor]
\item Corinna Glasner (\href{https://orcid.org/0000-0003-1241-1328}{ORCID}) [thesis advisor]
} }
} }
@ -2051,7 +2051,7 @@ not_intrinsic_resistant(
\item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Can be "3.3", "3.2", or "3.1".} \item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Can be "3.3", "3.2", or "3.1".}
} }
\value{ \value{
(internally) a \link{character} vector of column names, with additional class \code{"ab_selector"} When used inside selecting or filtering, this returns a \link{character} vector of column names, with additional class \code{"ab_selector"}. When used individually, this returns an \link[=as.ab]{'ab' vector} with all possible antimicrobial that the function would be able to select or filter.
} }
\description{ \description{
These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the \link{antibiotics} data set), without the need to define the columns or antibiotic abbreviations. These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the \link{antibiotics} data set), without the need to define the columns or antibiotic abbreviations.
@ -2116,9 +2116,15 @@ All data sets in this \code{AMR} package (about microorganisms, antibiotics, SIR
example_isolates example_isolates
# you can use the selectors separately to retrieve all possible antimicrobials:
carbapenems()
# Though they are primarily intended to use for selections and filters.
# Examples sections below are split into 'dplyr', 'base R', and 'data.table': # Examples sections below are split into 'dplyr', 'base R', and 'data.table':
\donttest{ \donttest{
\dontrun{
# dplyr ------------------------------------------------------------------- # dplyr -------------------------------------------------------------------
library(dplyr, warn.conflicts = FALSE) library(dplyr, warn.conflicts = FALSE)
@ -2204,7 +2210,7 @@ y <- example_isolates \%>\% filter(carbapenems() == "R")
z <- example_isolates \%>\% filter(if_all(carbapenems(), ~ .x == "R")) z <- example_isolates \%>\% filter(if_all(carbapenems(), ~ .x == "R"))
identical(x, y) && identical(y, z) identical(x, y) && identical(y, z)
}
# base R ------------------------------------------------------------------ # base R ------------------------------------------------------------------
# select columns 'IPM' (imipenem) and 'MEM' (meropenem) # select columns 'IPM' (imipenem) and 'MEM' (meropenem)
@ -5405,7 +5411,10 @@ geom_sir(
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL) facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(breaks = seq(0, 1, 0.1), limits = NULL) scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(..., aesthetics = "fill") scale_sir_colours(..., aesthetics = "fill")

View File

@ -53,6 +53,9 @@ expect_equal(ncol(example_isolates[, tetracyclines(), drop = FALSE]), 3, toleran
expect_equal(ncol(example_isolates[, trimethoprims(), drop = FALSE]), 2, tolerance = 0.5) expect_equal(ncol(example_isolates[, trimethoprims(), drop = FALSE]), 2, tolerance = 0.5)
expect_equal(ncol(example_isolates[, ureidopenicillins(), drop = FALSE]), 1, tolerance = 0.5) expect_equal(ncol(example_isolates[, ureidopenicillins(), drop = FALSE]), 1, tolerance = 0.5)
expect_message(carbapenems())
expect_error(administrable_per_os())
# Examples: # Examples:
# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB' # select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB'

View File

@ -61,29 +61,29 @@ Authors:
Other contributors: Other contributors:
\itemize{ \itemize{
\item Casper J. Albers (\href{https://orcid.org/0000-0002-9213-6743}{ORCID}) [thesis advisor] \item Andrew P. Norgan (\href{https://orcid.org/0000-0002-2955-2066}{ORCID}) [contributor]
\item Larisse Bolton (\href{https://orcid.org/0000-0001-7879-2173}{ORCID}) [contributor] \item Anita Williams (\href{https://orcid.org/0000-0002-5295-8451}{ORCID}) [contributor]
\item Peter Dutey-Magni (\href{https://orcid.org/0000-0002-8942-9836}{ORCID}) [contributor] \item Annick Lenglet (\href{https://orcid.org/0000-0003-2013-8405}{ORCID}) [contributor]
\item Judith M. Fonville [contributor] \item Anthony Underwood (\href{https://orcid.org/0000-0002-8547-4277}{ORCID}) [contributor]
\item Alex W. Friedrich (\href{https://orcid.org/0000-0003-4881-038X}{ORCID}) [thesis advisor] \item Anton Mymrikov [contributor]
\item Corinna Glasner (\href{https://orcid.org/0000-0003-1241-1328}{ORCID}) [thesis advisor] \item Bart C. Meijer [contributor]
\item Christian F. Luz (\href{https://orcid.org/0000-0001-5809-5995}{ORCID}) [contributor]
\item Dmytro Mykhailenko [contributor]
\item Eric H. L. C. M. Hazenberg [contributor] \item Eric H. L. C. M. Hazenberg [contributor]
\item Gwen Knight (\href{https://orcid.org/0000-0002-7263-9896}{ORCID}) [contributor] \item Gwen Knight (\href{https://orcid.org/0000-0002-7263-9896}{ORCID}) [contributor]
\item Annick Lenglet (\href{https://orcid.org/0000-0003-2013-8405}{ORCID}) [contributor]
\item Christian F. Luz (\href{https://orcid.org/0000-0001-5809-5995}{ORCID}) [contributor]
\item Bart C. Meijer [contributor]
\item Dmytro Mykhailenko [contributor]
\item Anton Mymrikov [contributor]
\item Andrew P. Norgan (\href{https://orcid.org/0000-0002-2955-2066}{ORCID}) [contributor]
\item Sofia Ny (\href{https://orcid.org/0000-0002-2017-1363}{ORCID}) [contributor]
\item Matthew Saab [contributor]
\item Jonas Salm [contributor]
\item Javier Sanchez (\href{https://orcid.org/0000-0003-2605-8094}{ORCID}) [contributor]
\item Rogier P. Schade [contributor]
\item Bhanu N. M. Sinha (\href{https://orcid.org/0000-0003-1634-0010}{ORCID}) [thesis advisor]
\item Jason Stull (\href{https://orcid.org/0000-0002-9028-8153}{ORCID}) [contributor] \item Jason Stull (\href{https://orcid.org/0000-0002-9028-8153}{ORCID}) [contributor]
\item Anthony Underwood (\href{https://orcid.org/0000-0002-8547-4277}{ORCID}) [contributor] \item Javier Sanchez (\href{https://orcid.org/0000-0003-2605-8094}{ORCID}) [contributor]
\item Anita Williams (\href{https://orcid.org/0000-0002-5295-8451}{ORCID}) [contributor] \item Jonas Salm [contributor]
\item Judith M. Fonville [contributor]
\item Larisse Bolton (\href{https://orcid.org/0000-0001-7879-2173}{ORCID}) [contributor]
\item Matthew Saab [contributor]
\item Peter Dutey-Magni (\href{https://orcid.org/0000-0002-8942-9836}{ORCID}) [contributor]
\item Rogier P. Schade [contributor]
\item Sofia Ny (\href{https://orcid.org/0000-0002-2017-1363}{ORCID}) [contributor]
\item Alex W. Friedrich (\href{https://orcid.org/0000-0003-4881-038X}{ORCID}) [thesis advisor]
\item Bhanu N. M. Sinha (\href{https://orcid.org/0000-0003-1634-0010}{ORCID}) [thesis advisor]
\item Casper J. Albers (\href{https://orcid.org/0000-0002-9213-6743}{ORCID}) [thesis advisor]
\item Corinna Glasner (\href{https://orcid.org/0000-0003-1241-1328}{ORCID}) [thesis advisor]
} }
} }

View File

@ -124,7 +124,7 @@ not_intrinsic_resistant(
\item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Can be "3.3", "3.2", or "3.1".} \item{version_expertrules}{the version number to use for the EUCAST Expert Rules and Intrinsic Resistance guideline. Can be "3.3", "3.2", or "3.1".}
} }
\value{ \value{
(internally) a \link{character} vector of column names, with additional class \code{"ab_selector"} When used inside selecting or filtering, this returns a \link{character} vector of column names, with additional class \code{"ab_selector"}. When used individually, this returns an \link[=as.ab]{'ab' vector} with all possible antimicrobial that the function would be able to select or filter.
} }
\description{ \description{
These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the \link{antibiotics} data set), without the need to define the columns or antibiotic abbreviations. These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the \link{antibiotics} data set), without the need to define the columns or antibiotic abbreviations.
@ -189,9 +189,15 @@ All data sets in this \code{AMR} package (about microorganisms, antibiotics, SIR
example_isolates example_isolates
# you can use the selectors separately to retrieve all possible antimicrobials:
carbapenems()
# Though they are primarily intended to use for selections and filters.
# Examples sections below are split into 'dplyr', 'base R', and 'data.table': # Examples sections below are split into 'dplyr', 'base R', and 'data.table':
\donttest{ \donttest{
\dontrun{
# dplyr ------------------------------------------------------------------- # dplyr -------------------------------------------------------------------
library(dplyr, warn.conflicts = FALSE) library(dplyr, warn.conflicts = FALSE)
@ -277,7 +283,7 @@ y <- example_isolates \%>\% filter(carbapenems() == "R")
z <- example_isolates \%>\% filter(if_all(carbapenems(), ~ .x == "R")) z <- example_isolates \%>\% filter(if_all(carbapenems(), ~ .x == "R"))
identical(x, y) && identical(y, z) identical(x, y) && identical(y, z)
}
# base R ------------------------------------------------------------------ # base R ------------------------------------------------------------------
# select columns 'IPM' (imipenem) and 'MEM' (meropenem) # select columns 'IPM' (imipenem) and 'MEM' (meropenem)

View File

@ -49,7 +49,10 @@ geom_sir(
facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL) facet_sir(facet = c("interpretation", "antibiotic"), nrow = NULL)
scale_y_percent(breaks = seq(0, 1, 0.1), limits = NULL) scale_y_percent(
breaks = function(x) seq(0, max(x, na.rm = TRUE), 0.1),
limits = NULL
)
scale_sir_colours(..., aesthetics = "fill") scale_sir_colours(..., aesthetics = "fill")