mirror of
https://github.com/msberends/AMR.git
synced 2025-04-19 08:33:49 +02:00
(v2.1.1.9157) improved as.ab()
, fixed knit_print of antibiogram
This commit is contained in:
parent
b10989f431
commit
195dfb4b91
@ -1,6 +1,6 @@
|
||||
Package: AMR
|
||||
Version: 2.1.1.9156
|
||||
Date: 2025-02-23
|
||||
Version: 2.1.1.9157
|
||||
Date: 2025-02-26
|
||||
Title: Antimicrobial Resistance Data Analysis
|
||||
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
||||
data analysis and to work with microbial and antimicrobial properties by
|
||||
|
@ -140,6 +140,7 @@ export(ab_info)
|
||||
export(ab_loinc)
|
||||
export(ab_name)
|
||||
export(ab_property)
|
||||
export(ab_reset_session)
|
||||
export(ab_selector)
|
||||
export(ab_synonyms)
|
||||
export(ab_tradenames)
|
||||
|
2
NEWS.md
2
NEWS.md
@ -1,4 +1,4 @@
|
||||
# AMR 2.1.1.9156
|
||||
# AMR 2.1.1.9157
|
||||
|
||||
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)*
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.2
|
||||
Name: AMR
|
||||
Version: 2.1.1.9156
|
||||
Version: 2.1.1.9157
|
||||
Summary: A Python wrapper for the AMR R package
|
||||
Home-page: https://github.com/msberends/AMR
|
||||
Author: Matthijs Berends
|
||||
|
@ -66,6 +66,7 @@ from .functions import administrable_iv
|
||||
from .functions import not_intrinsic_resistant
|
||||
from .functions import as_ab
|
||||
from .functions import is_ab
|
||||
from .functions import ab_reset_session
|
||||
from .functions import as_av
|
||||
from .functions import is_av
|
||||
from .functions import as_disk
|
||||
|
@ -228,6 +228,9 @@ def as_ab(x, *args, **kwargs):
|
||||
def is_ab(x):
|
||||
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
|
||||
return convert_to_python(amr_r.is_ab(x))
|
||||
def ab_reset_session(*args, **kwargs):
|
||||
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
|
||||
return convert_to_python(amr_r.ab_reset_session(*args, **kwargs))
|
||||
def as_av(x, *args, **kwargs):
|
||||
"""See our website of the R package for the manual: https://msberends.github.io/AMR/index.html"""
|
||||
return convert_to_python(amr_r.as_av(x, *args, **kwargs))
|
||||
|
BIN
PythonPackage/AMR/dist/amr-2.1.1.9156.tar.gz
vendored
BIN
PythonPackage/AMR/dist/amr-2.1.1.9156.tar.gz
vendored
Binary file not shown.
Binary file not shown.
BIN
PythonPackage/AMR/dist/amr-2.1.1.9157.tar.gz
vendored
Normal file
BIN
PythonPackage/AMR/dist/amr-2.1.1.9157.tar.gz
vendored
Normal file
Binary file not shown.
@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='AMR',
|
||||
version='2.1.1.9156',
|
||||
version='2.1.1.9157',
|
||||
packages=find_packages(),
|
||||
install_requires=[
|
||||
'rpy2',
|
||||
|
77
R/ab.R
77
R/ab.R
@ -97,11 +97,9 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
|
||||
meet_criteria(flag_multiple_results, allow_class = "logical", has_length = 1)
|
||||
meet_criteria(info, allow_class = "logical", has_length = 1)
|
||||
|
||||
if (is.ab(x)) {
|
||||
return(x)
|
||||
}
|
||||
if (all(x %in% c(AMR_env$AB_lookup$ab, NA))) {
|
||||
# all valid AB codes, but not yet right class
|
||||
if (is.ab(x) || all(x %in% c(AMR_env$AB_lookup$ab, NA))) {
|
||||
# all valid AB codes, but not yet right class or might have additional attributes as AMR selector
|
||||
attributes(x) <- NULL
|
||||
return(set_clean_class(x,
|
||||
new_class = c("ab", "character")
|
||||
))
|
||||
@ -130,6 +128,7 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
|
||||
|
||||
x <- unique(x_bak_clean) # this means that every x is in fact generalise_antibiotic_name(x)
|
||||
x_new <- rep(NA_character_, length(x))
|
||||
x_uncertain <- character(0)
|
||||
x_unknown <- character(0)
|
||||
x_unknown_ATCs <- character(0)
|
||||
|
||||
@ -176,6 +175,14 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
|
||||
x_new[known_codes_cid] <- AMR_env$AB_lookup$ab[match(x[known_codes_cid], AMR_env$AB_lookup$cid)]
|
||||
previously_coerced <- x %in% AMR_env$ab_previously_coerced$x
|
||||
x_new[previously_coerced & is.na(x_new)] <- AMR_env$ab_previously_coerced$ab[match(x[is.na(x_new) & x %in% AMR_env$ab_previously_coerced$x], AMR_env$ab_previously_coerced$x)]
|
||||
prev <- x_bak[which(x[which(previously_coerced)] %in% x_bak_clean)]
|
||||
if (any(previously_coerced) && isTRUE(info) && message_not_thrown_before("as.ab", prev, entire_session = TRUE)) {
|
||||
message_(
|
||||
"Returning previously coerced value", ifelse(length(unique(prev)) > 1, "s", ""),
|
||||
" for ", vector_and(prev), ". Run `ab_reset_session()` to reset this. This note will be shown once per session for this input."
|
||||
)
|
||||
}
|
||||
|
||||
already_known <- known_names | known_codes_ab | known_codes_atc | known_codes_cid | previously_coerced
|
||||
|
||||
# fix for NAs
|
||||
@ -325,6 +332,18 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
|
||||
if (loop_time <= 2 && fast_mode == FALSE) {
|
||||
# only run on first and second try
|
||||
|
||||
# base on the Levensthein distance function if length >= 6
|
||||
if (nchar(x[i]) >= 6) {
|
||||
l_dist <- as.double(utils::adist(x[i], AMR_env$AB_lookup$generalised_name,
|
||||
ignore.case = FALSE,
|
||||
fixed = TRUE,
|
||||
costs = c(insertions = 1, deletions = 2, substitutions = 2),
|
||||
counts = FALSE))
|
||||
x_new[i] <- AMR_env$AB_lookup$ab[order(l_dist)][1]
|
||||
x_uncertain <- c(x_uncertain, x_bak[x[i] == x_bak_clean][1])
|
||||
next
|
||||
}
|
||||
|
||||
# try by removing all spaces
|
||||
if (x[i] %like% " ") {
|
||||
found <- suppressWarnings(as.ab(gsub(" +", "", x[i], perl = TRUE), loop_time = loop_time + 2))
|
||||
@ -554,6 +573,8 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
|
||||
vector_and(x_unknown_ATCs), "."
|
||||
)
|
||||
}
|
||||
|
||||
# Throw note about uncertainties
|
||||
x_unknown <- x_unknown[!x_unknown %in% x_unknown_ATCs]
|
||||
x_unknown <- c(
|
||||
x_unknown,
|
||||
@ -567,6 +588,28 @@ as.ab <- function(x, flag_multiple_results = TRUE, info = interactive(), ...) {
|
||||
)
|
||||
}
|
||||
|
||||
# Throw note about uncertainties
|
||||
if (isTRUE(info) && length(x_uncertain) > 0 && fast_mode == FALSE) {
|
||||
if (message_not_thrown_before("as.ab", "uncertainties", x_bak)) {
|
||||
plural <- c("", "this")
|
||||
if (length(x_uncertain) > 1) {
|
||||
plural <- c("s", "these uncertainties")
|
||||
}
|
||||
if (length(x_uncertain) <= 3) {
|
||||
examples <- vector_and(
|
||||
paste0(
|
||||
'"', x_uncertain, '" (assumed ',
|
||||
ab_name(AMR_env$ab_previously_coerced$ab[which(AMR_env$ab_previously_coerced$x_bak %in% x_uncertain)], language = NULL, tolower = TRUE),
|
||||
", ", AMR_env$ab_previously_coerced$ab[which(AMR_env$ab_previously_coerced$x_bak %in% x_uncertain)], ")"),
|
||||
quotes = FALSE)
|
||||
} else {
|
||||
examples <- paste0(nr2char(length(x_uncertain)), " antimicrobial", plural[1])
|
||||
}
|
||||
message_("Antimicrobial translation was uncertain for ", examples,
|
||||
". If required, use `add_custom_antimicrobials()` to add custom entries.")
|
||||
}
|
||||
}
|
||||
|
||||
x_result <- x_new[match(x_bak_clean, x)]
|
||||
if (length(x_result) == 0) {
|
||||
x_result <- NA_character_
|
||||
@ -583,6 +626,18 @@ is.ab <- function(x) {
|
||||
inherits(x, "ab")
|
||||
}
|
||||
|
||||
#' @rdname as.ab
|
||||
#' @export
|
||||
ab_reset_session <- function() {
|
||||
if (NROW(AMR_env$ab_previously_coerced) > 0) {
|
||||
message_("Reset ", nr2char(NROW(AMR_env$ab_previously_coerced)), " previously matched input value", ifelse(NROW(AMR_env$ab_previously_coerced) > 1, "s", ""), ".")
|
||||
AMR_env$ab_previously_coerced <- AMR_env$ab_previously_coerced[0, , drop = FALSE]
|
||||
AMR_env$mo_uncertainties <- AMR_env$mo_uncertainties[0, , drop = FALSE]
|
||||
} else {
|
||||
message_("No previously matched input values to reset.")
|
||||
}
|
||||
}
|
||||
|
||||
# will be exported using s3_register() in R/zzz.R
|
||||
pillar_shaft.ab <- function(x, ...) {
|
||||
out <- trimws(format(x))
|
||||
@ -606,6 +661,15 @@ type_sum.ab <- function(x, ...) {
|
||||
#' @export
|
||||
#' @noRd
|
||||
print.ab <- function(x, ...) {
|
||||
if (!is.null(attributes(x)$amr_selector)) {
|
||||
function_name <- attributes(x)$amr_selector
|
||||
message_("This 'ab' vector was retrieved using `" , function_name, "()`, which should normally be used inside a `dplyr` verb or `data.frame` call, e.g.:\n",
|
||||
" ", AMR_env$bullet_icon, " your_data %>% select(", function_name, "())\n",
|
||||
" ", AMR_env$bullet_icon, " your_data %>% select(column_a, column_b, ", function_name, "())\n",
|
||||
" ", AMR_env$bullet_icon, " your_data %>% filter(any(", function_name, "() == \"R\"))\n",
|
||||
" ", AMR_env$bullet_icon, " your_data[, ", function_name, "()]\n",
|
||||
" ", AMR_env$bullet_icon, " your_data[, c(\"column_a\", \"column_b\", ", function_name, "())]")
|
||||
}
|
||||
cat("Class 'ab'\n")
|
||||
print(as.character(x), quote = FALSE)
|
||||
}
|
||||
@ -692,7 +756,8 @@ generalise_antibiotic_name <- function(x) {
|
||||
# non-character, space or number should be a slash
|
||||
x <- gsub("[^A-Z0-9 -)(]", "/", x, perl = TRUE)
|
||||
# correct for 'high level' antibiotics
|
||||
x <- gsub("([^A-Z0-9/ -]+)?(HIGH(.?LE?VE?L)?|[^A-Z0-9/]H[^A-Z0-9]?L)([^A-Z0-9 -]+)?", "-HIGH", x, perl = TRUE)
|
||||
x <- trimws(gsub("([^A-Z0-9/ -]+)?(HIGH(.?LE?VE?L)?|[^A-Z0-9/]H[^A-Z0-9]?L)([^A-Z0-9 -]+)?", "-HIGH", x, perl = TRUE))
|
||||
x <- trimws(gsub("^(-HIGH)(.*)", "\\2\\1", x))
|
||||
# remove part between brackets if that's followed by another string
|
||||
x <- gsub("(.*)+ [(].*[)]", "\\1", x)
|
||||
# spaces around non-characters must be removed: amox + clav -> amox/clav
|
||||
|
@ -47,7 +47,7 @@
|
||||
#' @details
|
||||
#' These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and `data.table`. They are heavily inspired by the [Tidyverse selection helpers][tidyselect::language] such as [`everything()`][tidyselect::everything()], but are not limited to `dplyr` verbs. Nonetheless, they are very convenient to use with `dplyr` functions such as [`select()`][dplyr::select()], [`filter()`][dplyr::filter()] and [`summarise()`][dplyr::summarise()], see *Examples*.
|
||||
#'
|
||||
#' All selectors can also be used in `tidymodels` packages such as `recipe` and `parsnip`. See for more info [our tutorial](https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html) on using these AMR functions for predictive modelling.
|
||||
#' All selectors can also be used in `tidymodels` packages such as `recipe` and `parsnip`. See for more info [our tutorial](https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html) on using antimicrobial selectors for predictive modelling.
|
||||
#'
|
||||
#' All columns in the data in which these functions are called will be searched for known antimicrobial names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the [antibiotics] data set. This means that a selector such as [aminoglycosides()] will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc.
|
||||
#'
|
||||
@ -747,16 +747,8 @@ amr_select_exec <- function(function_name,
|
||||
|
||||
if (is.null(vars_df)) {
|
||||
# no data found, no antimicrobials, so no input. Happens if users run e.g. `aminoglycosides()` as a separate command.
|
||||
examples <- paste0(
|
||||
" ", AMR_env$bullet_icon, " your_data %>% select(", function_name, "())\n",
|
||||
" ", AMR_env$bullet_icon, " your_data %>% select(column_a, column_b, ", function_name, "())\n",
|
||||
" ", AMR_env$bullet_icon, " your_data %>% filter(any(", function_name, "() == \"R\"))\n",
|
||||
" ", AMR_env$bullet_icon, " your_data[, ", function_name, "()]\n",
|
||||
" ", AMR_env$bullet_icon, " your_data[, c(\"column_a\", \"column_b\", ", function_name, "())]")
|
||||
message_("The function `" , function_name, "()` should be used inside a `dplyr` verb or `data.frame` call, e.g.:\n",
|
||||
examples,
|
||||
"\n\nNow returning a vector of all possible antimicrobials that `" , function_name, "()` can select.")
|
||||
return(sort(abx))
|
||||
# print.ab will cover the additional printing text
|
||||
return(structure(sort(abx), amr_selector = function_name))
|
||||
}
|
||||
|
||||
# get the columns with a group names in the chosen ab class
|
||||
|
@ -441,7 +441,7 @@ antibiogram.default <- function(x,
|
||||
x <- ascertain_sir_classes(x, "x")
|
||||
meet_criteria(wisca, allow_class = "logical", has_length = 1)
|
||||
if (isTRUE(wisca)) {
|
||||
if (!is.null(mo_transform)) {
|
||||
if (!is.null(mo_transform) && !missing(mo_transform)) {
|
||||
warning_("WISCA must be based on the species level as WISCA parameters are based on this. For that reason, `mo_transform` will be ignored.")
|
||||
}
|
||||
mo_transform <- function(x) suppressMessages(suppressWarnings(paste(mo_genus(x, keep_synonyms = TRUE, language = NULL), mo_species(x, keep_synonyms = TRUE, language = NULL))))
|
||||
@ -1245,10 +1245,14 @@ knit_print.antibiogram <- function(x, italicise = TRUE, na = getOption("knitr.ka
|
||||
meet_criteria(italicise, allow_class = "logical", has_length = 1)
|
||||
meet_criteria(na, allow_class = "character", has_length = 1, allow_NA = TRUE)
|
||||
|
||||
if (!isTRUE(attributes(x)$wisca) && isTRUE(italicise) && "mo" %in% colnames(attributes(x)$long_numeric)) {
|
||||
add_MO_lookup_to_AMR_env()
|
||||
|
||||
cols_with_mo_names <- vapply(FUN.VALUE = logical(1), x, function(x) any(x %in% AMR_env$MO_lookup$fullname, na.rm = TRUE))
|
||||
if (any(cols_with_mo_names)) {
|
||||
for (i in which(cols_with_mo_names)) {
|
||||
# make all microorganism names italic, according to nomenclature
|
||||
names_col <- ifelse(isTRUE(attributes(x)$has_syndromic_group), 2, 1)
|
||||
x[[names_col]] <- italicise_taxonomy(x[[names_col]], type = "markdown")
|
||||
x[[i]] <- italicise_taxonomy(x[[i]], type = "markdown")
|
||||
}
|
||||
}
|
||||
|
||||
old_option <- getOption("knitr.kable.NA")
|
||||
|
@ -218,12 +218,10 @@ create_scale_mic <- function(aest, keep_operators, mic_range = NULL, ...) {
|
||||
as.double(rescale_mic(x = as.double(as.mic(x)), keep_operators = keep_operators, mic_range = mic_range, as.mic = TRUE))
|
||||
}
|
||||
scale$transform_df <- function(self, df) {
|
||||
stop_if(all(is.na(df[[aest]])),
|
||||
"`scale_", aest, "_mic()`: All MIC values are `NA`. Check your input data.", call = FALSE)
|
||||
self$mic_values_rescaled <- rescale_mic(x = as.double(as.mic(df[[aest]])), keep_operators = keep_operators, mic_range = mic_range, as.mic = TRUE)
|
||||
# create new breaks and labels here
|
||||
lims <- range(self$mic_values_rescaled, na.rm = TRUE)
|
||||
# support inner and outer mic_range settings (e.g., data ranges 0.5-8 and mic_range is set to 0.025-64)
|
||||
# support inner and outer 'mic_range' settings (e.g., the data ranges 0.5-8 and 'mic_range' is set to 0.025-32)
|
||||
if (!is.null(mic_range) && !is.na(mic_range[1]) && !is.na(lims[1]) && mic_range[1] < lims[1]) {
|
||||
lims[1] <- mic_range[1]
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
This knowledge base contains all context you must know about the AMR package for R. You are a GPT trained to be an assistant for the AMR package in R. You are an incredible R specialist, especially trained in this package and in the tidyverse.
|
||||
|
||||
First and foremost, you are trained on version 2.1.1.9156. Remember this whenever someone asks which AMR package version you’re at.
|
||||
First and foremost, you are trained on version 2.1.1.9157. Remember this whenever someone asks which AMR package version you’re at.
|
||||
|
||||
Below are the contents of the file, the file, and all the files (documentation) in the package. Every file content is split using 100 hypens.
|
||||
----------------------------------------------------------------------------------------------------
|
||||
@ -151,6 +151,7 @@ export(ab_info)
|
||||
export(ab_loinc)
|
||||
export(ab_name)
|
||||
export(ab_property)
|
||||
export(ab_reset_session)
|
||||
export(ab_selector)
|
||||
export(ab_synonyms)
|
||||
export(ab_tradenames)
|
||||
@ -2334,7 +2335,7 @@ my_data_with_all_these_columns \%>\%
|
||||
\details{
|
||||
These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and \code{data.table}. They are heavily inspired by the \link[tidyselect:language]{Tidyverse selection helpers} such as \code{\link[tidyselect:everything]{everything()}}, but are not limited to \code{dplyr} verbs. Nonetheless, they are very convenient to use with \code{dplyr} functions such as \code{\link[dplyr:select]{select()}}, \code{\link[dplyr:filter]{filter()}} and \code{\link[dplyr:summarise]{summarise()}}, see \emph{Examples}.
|
||||
|
||||
All selectors can also be used in \code{tidymodels} packages such as \code{recipe} and \code{parsnip}. See for more info \href{https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html}{our tutorial} on using these AMR functions for predictive modelling.
|
||||
All selectors can also be used in \code{tidymodels} packages such as \code{recipe} and \code{parsnip}. See for more info \href{https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html}{our tutorial} on using antimicrobial selectors for predictive modelling.
|
||||
|
||||
All columns in the data in which these functions are called will be searched for known antimicrobial names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the \link{antibiotics} data set. This means that a selector such as \code{\link[=aminoglycosides]{aminoglycosides()}} will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc.
|
||||
|
||||
@ -2573,11 +2574,14 @@ THE PART HEREAFTER CONTAINS CONTENTS FROM FILE 'man/as.ab.Rd':
|
||||
\alias{as.ab}
|
||||
\alias{ab}
|
||||
\alias{is.ab}
|
||||
\alias{ab_reset_session}
|
||||
\title{Transform Input to an Antibiotic ID}
|
||||
\usage{
|
||||
as.ab(x, flag_multiple_results = TRUE, info = interactive(), ...)
|
||||
|
||||
is.ab(x)
|
||||
|
||||
ab_reset_session()
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{a \link{character} vector to determine to antibiotic ID}
|
||||
@ -9013,9 +9017,6 @@ We begin by loading the required libraries and preparing the `example_isolates`
|
||||
library(tidymodels) # For machine learning workflows, and data manipulation (dplyr, tidyr, ...)
|
||||
library(AMR) # For AMR data analysis
|
||||
|
||||
# Load the example_isolates dataset
|
||||
data("example_isolates") # Preloaded dataset with AMR results
|
||||
|
||||
# Select relevant columns for prediction
|
||||
data <- example_isolates %>%
|
||||
# select AB results dynamically
|
||||
@ -9136,7 +9137,7 @@ metrics
|
||||
- `predict()` generates predictions on the testing set.
|
||||
- `metrics()` computes evaluation metrics like accuracy and kappa.
|
||||
|
||||
It appears we can predict the Gram based on AMR results with a `r round(metrics$.estimate[1], 3)` accuracy based on AMR results of aminoglycosides and beta-lactam antibiotics. The ROC curve looks like this:
|
||||
It appears we can predict the Gram based on AMR results with a `r round(metrics$.estimate[1], 3) * 100`% accuracy based on AMR results of aminoglycosides and beta-lactam antibiotics. The ROC curve looks like this:
|
||||
|
||||
```{r}
|
||||
predictions %>%
|
BIN
data-raw/wisca.xlsx
Normal file
BIN
data-raw/wisca.xlsx
Normal file
Binary file not shown.
BIN
data-raw/wisca_params.xlsx
Normal file
BIN
data-raw/wisca_params.xlsx
Normal file
Binary file not shown.
@ -154,7 +154,7 @@ my_data_with_all_these_columns \%>\%
|
||||
\details{
|
||||
These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and \code{data.table}. They are heavily inspired by the \link[tidyselect:language]{Tidyverse selection helpers} such as \code{\link[tidyselect:everything]{everything()}}, but are not limited to \code{dplyr} verbs. Nonetheless, they are very convenient to use with \code{dplyr} functions such as \code{\link[dplyr:select]{select()}}, \code{\link[dplyr:filter]{filter()}} and \code{\link[dplyr:summarise]{summarise()}}, see \emph{Examples}.
|
||||
|
||||
All selectors can also be used in \code{tidymodels} packages such as \code{recipe} and \code{parsnip}. See for more info \href{https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html}{our tutorial} on using these AMR functions for predictive modelling.
|
||||
All selectors can also be used in \code{tidymodels} packages such as \code{recipe} and \code{parsnip}. See for more info \href{https://msberends.github.io/AMR/articles/AMR_with_tidymodels.html}{our tutorial} on using antimicrobial selectors for predictive modelling.
|
||||
|
||||
All columns in the data in which these functions are called will be searched for known antimicrobial names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the \link{antibiotics} data set. This means that a selector such as \code{\link[=aminoglycosides]{aminoglycosides()}} will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc.
|
||||
|
||||
|
@ -4,11 +4,14 @@
|
||||
\alias{as.ab}
|
||||
\alias{ab}
|
||||
\alias{is.ab}
|
||||
\alias{ab_reset_session}
|
||||
\title{Transform Input to an Antibiotic ID}
|
||||
\usage{
|
||||
as.ab(x, flag_multiple_results = TRUE, info = interactive(), ...)
|
||||
|
||||
is.ab(x)
|
||||
|
||||
ab_reset_session()
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{a \link{character} vector to determine to antibiotic ID}
|
||||
|
@ -45,9 +45,6 @@ We begin by loading the required libraries and preparing the `example_isolates`
|
||||
library(tidymodels) # For machine learning workflows, and data manipulation (dplyr, tidyr, ...)
|
||||
library(AMR) # For AMR data analysis
|
||||
|
||||
# Load the example_isolates dataset
|
||||
data("example_isolates") # Preloaded dataset with AMR results
|
||||
|
||||
# Select relevant columns for prediction
|
||||
data <- example_isolates %>%
|
||||
# select AB results dynamically
|
||||
@ -168,7 +165,7 @@ metrics
|
||||
- `predict()` generates predictions on the testing set.
|
||||
- `metrics()` computes evaluation metrics like accuracy and kappa.
|
||||
|
||||
It appears we can predict the Gram based on AMR results with a `r round(metrics$.estimate[1], 3)` accuracy based on AMR results of aminoglycosides and beta-lactam antibiotics. The ROC curve looks like this:
|
||||
It appears we can predict the Gram based on AMR results with a `r round(metrics$.estimate[1], 3) * 100`% accuracy based on AMR results of aminoglycosides and beta-lactam antibiotics. The ROC curve looks like this:
|
||||
|
||||
```{r}
|
||||
predictions %>%
|
||||
|
Loading…
x
Reference in New Issue
Block a user