1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-20 03:53:17 +02:00

(v1.8.1) prerelease 1.8.1

This commit is contained in:
2022-03-14 16:36:10 +01:00
parent 08d387b5ce
commit 1b0983e382
98 changed files with 2958 additions and 1291 deletions

View File

@ -44,7 +44,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.8.0</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.8.1</span>
</span>
</div>
@ -201,26 +201,43 @@
<div class="section level3">
<h3 id="import-of-data">Import of data<a class="anchor" aria-label="anchor" href="#import-of-data"></a>
</h3>
<p>This tutorial assumes you already imported the WHONET data with e.g. the <a href="https://readxl.tidyverse.org/" class="external-link"><code>readxl</code> package</a>. In RStudio, this can be done using the menu button Import Dataset in the tab Environment. Choose the option From Excel and select your exported file. Make sure date fields are imported correctly.</p>
<p>This tutorial assumes you already imported the WHONET data with
e.g. the <a href="https://readxl.tidyverse.org/" class="external-link"><code>readxl</code>
package</a>. In RStudio, this can be done using the menu button Import
Dataset in the tab Environment. Choose the option From Excel and
select your exported file. Make sure date fields are imported
correctly.</p>
<p>An example syntax could look like this:</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://readxl.tidyverse.org" class="external-link">readxl</a></span><span class="op">)</span>
<span class="va">data</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://readxl.tidyverse.org/reference/read_excel.html" class="external-link">read_excel</a></span><span class="op">(</span>path <span class="op">=</span> <span class="st">"path/to/your/file.xlsx"</span><span class="op">)</span></code></pre></div>
<p>This package comes with an <a href="https://msberends.github.io/AMR/reference/WHONET.html">example data set <code>WHONET</code></a>. We will use it for this analysis.</p>
<p>This package comes with an <a href="https://msberends.github.io/AMR/reference/WHONET.html">example
data set <code>WHONET</code></a>. We will use it for this analysis.</p>
</div>
<div class="section level3">
<h3 id="preparation">Preparation<a class="anchor" aria-label="anchor" href="#preparation"></a>
</h3>
<p>First, load the relevant packages if you did not yet did this. I use the tidyverse for all of my analyses. All of them. If you dont know it yet, I suggest you read about it on their website: <a href="https://www.tidyverse.org/" class="external-link uri">https://www.tidyverse.org/</a>.</p>
<p>First, load the relevant packages if you did not yet did this. I use
the tidyverse for all of my analyses. All of them. If you dont know it
yet, I suggest you read about it on their website: <a href="https://www.tidyverse.org/" class="external-link uri">https://www.tidyverse.org/</a>.</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://dplyr.tidyverse.org" class="external-link">dplyr</a></span><span class="op">)</span> <span class="co"># part of tidyverse</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://ggplot2.tidyverse.org" class="external-link">ggplot2</a></span><span class="op">)</span> <span class="co"># part of tidyverse</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://msberends.github.io/AMR">AMR</a></span><span class="op">)</span> <span class="co"># this package</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://msberends.github.io/AMR/">AMR</a></span><span class="op">)</span> <span class="co"># this package</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://github.com/msberends/cleaner" class="external-link">cleaner</a></span><span class="op">)</span> <span class="co"># to create frequency tables</span></code></pre></div>
<p>We will have to transform some variables to simplify and automate the analysis:</p>
<p>We will have to transform some variables to simplify and automate the
analysis:</p>
<ul>
<li>Microorganisms should be transformed to our own microorganism codes (called an <code>mo</code>) using <a href="https://msberends.github.io/AMR/reference/catalogue_of_life">our Catalogue of Life reference data set</a>, which contains all ~70,000 microorganisms from the taxonomic kingdoms Bacteria, Fungi and Protozoa. We do the tranformation with <code><a href="../reference/as.mo.html">as.mo()</a></code>. This function also recognises almost all WHONET abbreviations of microorganisms.</li>
<li>Antimicrobial results or interpretations have to be clean and valid. In other words, they should only contain values <code>"S"</code>, <code>"I"</code> or <code>"R"</code>. That is exactly where the <code><a href="../reference/as.rsi.html">as.rsi()</a></code> function is for.</li>
<li>Microorganisms should be transformed to our own microorganism codes
(called an <code>mo</code>) using <a href="https://msberends.github.io/AMR/reference/catalogue_of_life">our
Catalogue of Life reference data set</a>, which contains all ~70,000
microorganisms from the taxonomic kingdoms Bacteria, Fungi and Protozoa.
We do the tranformation with <code><a href="../reference/as.mo.html">as.mo()</a></code>. This function also
recognises almost all WHONET abbreviations of microorganisms.</li>
<li>Antimicrobial results or interpretations have to be clean and valid.
In other words, they should only contain values <code>"S"</code>,
<code>"I"</code> or <code>"R"</code>. That is exactly where the
<code><a href="../reference/as.rsi.html">as.rsi()</a></code> function is for.</li>
</ul>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># transform variables</span>
@ -230,7 +247,9 @@
<span class="co"># transform everything from "AMP_ND10" to "CIP_EE" to the new `rsi` class</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/mutate_all.html" class="external-link">mutate_at</a></span><span class="op">(</span><span class="fu"><a href="https://dplyr.tidyverse.org/reference/vars.html" class="external-link">vars</a></span><span class="op">(</span><span class="va">AMP_ND10</span><span class="op">:</span><span class="va">CIP_EE</span><span class="op">)</span>, <span class="va">as.rsi</span><span class="op">)</span></code></pre></div>
<p>No errors or warnings, so all values are transformed succesfully.</p>
<p>We also created a package dedicated to data cleaning and checking, called the <code>cleaner</code> package. Its <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html" class="external-link">freq()</a></code> function can be used to create frequency tables.</p>
<p>We also created a package dedicated to data cleaning and checking,
called the <code>cleaner</code> package. Its <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html" class="external-link">freq()</a></code>
function can be used to create frequency tables.</p>
<p>So lets check our data, with a couple of frequency tables:</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># our newly created `mo` variable, put in the mo_name() function</span>
@ -238,11 +257,19 @@
<p><strong>Frequency table</strong></p>
<p>Class: character<br>
Length: 500<br>
Available: 500 (100.0%, NA: 0 = 0.0%)<br>
Available: 500 (100%, NA: 0 = 0%)<br>
Unique: 37</p>
<p>Shortest: 11<br>
Longest: 40</p>
<table class="table">
<colgroup>
<col width="4%">
<col width="47%">
<col width="7%">
<col width="10%">
<col width="13%">
<col width="15%">
</colgroup>
<thead><tr class="header">
<th align="left"></th>
<th align="left">Item</th>
@ -334,7 +361,7 @@ Longest: 40</p>
</tr>
</tbody>
</table>
<p>(omitted 27 entries, n = 56 [11.20%])</p>
<p>(omitted 27 entries, n = 56 [11.2%])</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># our transformed antibiotic columns</span>
<span class="co"># amoxicillin/clavulanic acid (J01CR02) as an example</span>
@ -388,7 +415,8 @@ Drug group: Beta-lactams/penicillins<br>
<div class="section level3">
<h3 id="a-first-glimpse-at-results">A first glimpse at results<a class="anchor" aria-label="anchor" href="#a-first-glimpse-at-results"></a>
</h3>
<p>An easy <code>ggplot</code> will already give a lot of information, using the included <code><a href="../reference/ggplot_rsi.html">ggplot_rsi()</a></code> function:</p>
<p>An easy <code>ggplot</code> will already give a lot of information,
using the included <code><a href="../reference/ggplot_rsi.html">ggplot_rsi()</a></code> function:</p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">data</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html" class="external-link">group_by</a></span><span class="op">(</span><span class="va">Country</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%&gt;%</a></span>
@ -408,12 +436,14 @@ Drug group: Beta-lactams/penicillins<br>
<footer><div class="copyright">
<p></p>
<p>Developed by Matthijs S. Berends, Christian F. Luz, Dennis Souverein, Erwin E. A. Hassing.</p>
<p>Developed by Matthijs S. Berends, Christian F. Luz, Dennis Souverein,
Erwin E. A. Hassing.</p>
</div>
<div class="pkgdown">
<p></p>
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.0.</p>
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a>
2.0.2.</p>
</div>
</footer>