mirror of
https://github.com/msberends/AMR.git
synced 2025-07-17 19:53:16 +02:00
(v1.8.1.9011) update prevalence of some genera
This commit is contained in:
@ -94,16 +94,20 @@ The \code{\link[=as.rsi]{as.rsi()}} function works in four ways:
|
||||
\item For \strong{cleaning raw / untransformed data}. The data will be cleaned to only contain values S, I and R and will try its best to determine this with some intelligence. For example, mixed values with R/SI interpretations and MIC values such as \code{"<0.25; S"} will be coerced to \code{"S"}. Combined interpretations for multiple test methods (as seen in laboratory records) such as \code{"S; S"} will be coerced to \code{"S"}, but a value like \code{"S; I"} will return \code{NA} with a warning that the input is unclear.
|
||||
\item For \strong{interpreting minimum inhibitory concentration (MIC) values} according to EUCAST or CLSI. You must clean your MIC values first using \code{\link[=as.mic]{as.mic()}}, that also gives your columns the new data class \code{\link{mic}}. Also, be sure to have a column with microorganism names or codes. It will be found automatically, but can be set manually using the \code{mo} argument.
|
||||
\itemize{
|
||||
\item Using \code{dplyr}, R/SI interpretation can be done very easily with either:\preformatted{your_data \%>\% mutate_if(is.mic, as.rsi) # until dplyr 1.0.0
|
||||
\item Using \code{dplyr}, R/SI interpretation can be done very easily with either:
|
||||
|
||||
\if{html}{\out{<div class="sourceCode">}}\preformatted{your_data \%>\% mutate_if(is.mic, as.rsi) # until dplyr 1.0.0
|
||||
your_data \%>\% mutate(across(where(is.mic), as.rsi)) # since dplyr 1.0.0
|
||||
}
|
||||
}\if{html}{\out{</div>}}
|
||||
\item Operators like "<=" will be stripped before interpretation. When using \code{conserve_capped_values = TRUE}, an MIC value of e.g. ">2" will always return "R", even if the breakpoint according to the chosen guideline is ">=4". This is to prevent that capped values from raw laboratory data would not be treated conservatively. The default behaviour (\code{conserve_capped_values = FALSE}) considers ">2" to be lower than ">=4" and might in this case return "S" or "I".
|
||||
}
|
||||
\item For \strong{interpreting disk diffusion diameters} according to EUCAST or CLSI. You must clean your disk zones first using \code{\link[=as.disk]{as.disk()}}, that also gives your columns the new data class \code{\link{disk}}. Also, be sure to have a column with microorganism names or codes. It will be found automatically, but can be set manually using the \code{mo} argument.
|
||||
\itemize{
|
||||
\item Using \code{dplyr}, R/SI interpretation can be done very easily with either:\preformatted{your_data \%>\% mutate_if(is.disk, as.rsi) # until dplyr 1.0.0
|
||||
\item Using \code{dplyr}, R/SI interpretation can be done very easily with either:
|
||||
|
||||
\if{html}{\out{<div class="sourceCode">}}\preformatted{your_data \%>\% mutate_if(is.disk, as.rsi) # until dplyr 1.0.0
|
||||
your_data \%>\% mutate(across(where(is.disk), as.rsi)) # since dplyr 1.0.0
|
||||
}
|
||||
}\if{html}{\out{</div>}}
|
||||
}
|
||||
\item For \strong{interpreting a complete data set}, with automatic determination of MIC values, disk diffusion diameters, microorganism names or codes, and antimicrobial test results. This is done very simply by running \code{as.rsi(your_data)}.
|
||||
}
|
||||
|
Reference in New Issue
Block a user