1
0
mirror of https://github.com/msberends/AMR.git synced 2025-07-09 17:41:59 +02:00

new ggplot enhancement

This commit is contained in:
2018-08-11 21:30:00 +02:00
parent 4680df1e9c
commit 1ba7d883fe
20 changed files with 312 additions and 151 deletions

View File

@ -1,15 +0,0 @@
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
rsi_calc_S <- function(x, include_I) {
.Call(`_AMR_rsi_calc_S`, x, include_I)
}
rsi_calc_I <- function(x) {
.Call(`_AMR_rsi_calc_I`, x)
}
rsi_calc_R <- function(x, include_I) {
.Call(`_AMR_rsi_calc_R`, x, include_I)
}

130
R/ggplot_rsi.R Normal file
View File

@ -0,0 +1,130 @@
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Analysis #
# #
# AUTHORS #
# Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
# #
# LICENCE #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License version 2.0, #
# as published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# ==================================================================== #
#' AMR bar plots with \code{ggplot}
#'
#' Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link{ggplot}} functions.
#' @param data a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})
#' @param position position adjustment of bars, either \code{"stack"} (default) or \code{"dodge"}
#' @param x parameter to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"}
#' @param facet parameter to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"}
#' @details At default, the names of antibiotics will be shown on the plots using \code{\link{abname}}. This can be set with the option \code{get_antibiotic_names} (a logical value), so change it e.g. to \code{FALSE} with \code{options(get_antibiotic_names = FALSE)}.
#'
#' \strong{The functions}\cr
#' \code{geom_rsi} will take any variable from the data that has an \code{rsi} class (created with \code{\link{as.rsi}}) using \code{\link{portion_df}} and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
#'
#' \code{facet_rsi} creates 2d plots (at default based on S/I/R) using \code{\link{facet_wrap}}.
#'
#' \code{scale_y_percent} transforms the y axis to a 0 to 100% range.
#'
#' \code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R.
#'
#' \code{theme_rsi} is a \code{\link{theme}} with minimal distraction.
#'
#' \code{ggplot_rsi} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\code{\%>\%}). See Examples.
#' @rdname ggplot_rsi
#' @export
#' @examples
#' library(dplyr)
#' library(ggplot2)
#'
#' # get antimicrobial results for drugs against a UTI:
#' ggplot(septic_patients %>% select(amox, nitr, fosf, trim, cipr)) +
#' geom_rsi()
#'
#' # prettify it using some additional functions
#' df <- septic_patients[, c("amox", "nitr", "fosf", "trim", "cipr")]
#' ggplot(df) +
#' geom_rsi(x = "Interpretation") +
#' facet_rsi(facet = "Antibiotic") +
#' scale_y_percent() +
#' scale_rsi_colours() +
#' theme_rsi()
#'
#' # or better yet, simplify this using the wrapper function - a single command:
#' septic_patients %>%
#' select(amox, nitr, fosf, trim, cipr) %>%
#' ggplot_rsi()
#'
#' septic_patients %>%
#' select(amox, nitr, fosf, trim, cipr) %>%
#' ggplot_rsi(x = "Interpretation", facet = "Antibiotic")
ggplot_rsi <- function(data,
x = "Antibiotic",
facet = NULL) {
p <- ggplot2::ggplot(data = data) +
geom_rsi(x = x) +
scale_y_percent() +
scale_rsi_colours() +
theme_rsi()
if (!is.null(facet)) {
p <- p + facet_rsi(facet = facet)
}
p
}
#' @rdname ggplot_rsi
#' @export
geom_rsi <- function(position = "stack", x = c("Antibiotic", "Interpretation")) {
x <- x[1]
if (!x %in% c("Antibiotic", "Interpretation")) {
stop("`x` must be 'Antibiotic' or 'Interpretation'")
}
ggplot2::layer(geom = "bar", stat = "identity", position = position,
mapping = ggplot2::aes_string(x = x, y = "Percentage", fill = "Interpretation"),
data = AMR::portion_df, params = list())
}
#' @rdname ggplot_rsi
#' @export
facet_rsi <- function(facet = c("Interpretation", "Antibiotic")) {
facet <- facet[1]
if (!facet %in% c("Antibiotic", "Interpretation")) {
stop("`facet` must be 'Antibiotic' or 'Interpretation'")
}
ggplot2::facet_wrap(facets = facet, scales = "free")
}
#' @rdname ggplot_rsi
#' @export
scale_y_percent <- function() {
ggplot2::scale_y_continuous(name = "Percentage",
breaks = seq(0, 1, 0.1),
limits = c(0, 1),
labels = percent(seq(0, 1, 0.1)))
}
#' @rdname ggplot_rsi
#' @export
scale_rsi_colours <- function() {
ggplot2::scale_fill_brewer(palette = "RdYlGn")
}
#' @rdname ggplot_rsi
#' @export
theme_rsi <- function() {
theme_minimal() +
theme(panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank(),
panel.grid.major.y = element_line(colour = "grey75"))
}

View File

@ -17,6 +17,14 @@
# ==================================================================== #
globalVariables(c('abname',
'Antibiotic',
'Interpretation',
'Percentage',
'bind_rows',
'element_blank',
'element_line',
'theme',
'theme_minimal',
'antibiotic',
'antibiotics',
'atc',

View File

@ -25,8 +25,12 @@
#' @param ab2 like \code{ab}, a vector of antibiotic interpretations. Use this to calculate (the lack of) co-resistance: the probability where one of two drugs have a resistant or susceptible result. See Examples.
#' @param minimum minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA}. The default number of \code{30} isolates is advised by the CLSI as best practice, see Source.
#' @param as_percent logical to indicate whether the output must be returned as percent (text), will else be a double
#' @param data a code{data.frame} containing columns with class \code{rsi} (see \code{\link{as.rsi}})
#' @param translate a logical value to indicate whether antibiotic abbreviations should be translated with \code{\link{abname}}
#' @details \strong{Remember that you should filter your table to let it contain only first isolates!} Use \code{\link{first_isolate}} to determine them in your data set.
#'
#' \code{portion_df} takes any variable from \code{data} that has an \code{"rsi"} class (created with \code{\link{as.rsi}}) and calculates the portions R, I and S. The resulting \code{data.frame} will have three rows (for R/I/S) and a column for each variable with class \code{"rsi"}.
#'
#' The old \code{\link{rsi}} function is still available for backwards compatibility but is deprecated.
#' \if{html}{
#' \cr\cr
@ -225,11 +229,11 @@ rsi_calc <- function(type,
}
if (type == "S") {
found <- .Call(`_AMR_rsi_calc_S`, x, include_I)
found <- sum(as.integer(x) <= 1 + include_I, na.rm = TRUE)
} else if (type == "I") {
found <- .Call(`_AMR_rsi_calc_I`, x)
found <- sum(as.integer(x) == 2, na.rm = TRUE)
} else if (type == "R") {
found <- .Call(`_AMR_rsi_calc_R`, x, include_I)
found <- sum(as.integer(x) >= 3 - include_I, na.rm = TRUE)
} else {
stop("invalid type")
}
@ -240,3 +244,29 @@ rsi_calc <- function(type,
found / total
}
}
#' @rdname portion
#' @importFrom dplyr bind_cols summarise_if mutate
#' @export
portion_df <- function(data, translate = getOption("get_antibiotic_names", TRUE)) {
resS <- bind_cols(data.frame(Interpretation = "S", stringsAsFactors = FALSE),
summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_S))
resI <- bind_cols(data.frame(Interpretation = "I", stringsAsFactors = FALSE),
summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_I))
resR <- bind_cols(data.frame(Interpretation = "R", stringsAsFactors = FALSE),
summarise_if(.tbl = data,
.predicate = is.rsi,
.funs = portion_R))
res <- bind_rows(resS, resI, resR) %>%
mutate(Interpretation = factor(Interpretation, levels = c("R", "I", "S"), ordered = TRUE)) %>%
tidyr::gather(Antibiotic, Percentage, -Interpretation)
if (translate == TRUE) {
res <- res %>% mutate(Antibiotic = abname(Antibiotic, from = "guess", to = "official"))
}
res
}

View File

@ -1,7 +1,3 @@
.onLoad <- function(libname, pkgname) {
backports::import(pkgname)
}
#' @importFrom Rcpp evalCpp
#' @useDynLib AMR, .registration = TRUE
NULL